IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp403-413.html
   My bibliography  Save this article

Regional forecasts and smoothing effect of photovoltaic power generation in Japan: An approach with principal component analysis

Author

Listed:
  • da Silva Fonseca Junior, Joao Gari
  • Oozeki, Takashi
  • Ohtake, Hideaki
  • Shimose, Ken-ichi
  • Takashima, Takumi
  • Ogimoto, Kazuhiko

Abstract

Regional forecasts of power generated by photovoltaic systems have an important role helping power utilities to manage grids with a high level of penetration of such systems. The objective of this study is to propose a method to obtain one-day ahead hourly regional forecasts of photovoltaic power when regional information is available. The method is based on the use of principal component analysis, support vector regression and weather forecast data. One-day ahead regional forecasts of photovoltaic power were done for 4 of the main regions of Japan for 1 year, 2009, using hourly power generation data of 453 photovoltaic systems. The performance of the method was characterized comparing the results it yielded with the ones provides by a persistence approach and by an approach that do not employ the principal component analysis. Moreover, the expected smoothing effect on the error achieved when the regional forecasts are based on forecasts for each photovoltaic system is presented, constituting an additional reference to evaluate the proposed method. The results show that the method performed well; its regional forecasts had a normalized annual root mean square error of 0.07 kWh/kWrated in the worst case, and the persistence approach was outperformed by at least 51% regarding the same error. The use of principal component proved to be a simple and particularly effective approach, decreasing the bias of the forecasts in all regions, and causing a reduction of the normalized root mean square error from 20.2% to 57.8% depending on the region. The proposed method also yielded results within the same level of forecasts which benefitted from the smoothing effect; the former presented a maximum variation of 10.2% of the normalized root mean square error of the latter in the worst case.

Suggested Citation

  • da Silva Fonseca Junior, Joao Gari & Oozeki, Takashi & Ohtake, Hideaki & Shimose, Ken-ichi & Takashima, Takumi & Ogimoto, Kazuhiko, 2014. "Regional forecasts and smoothing effect of photovoltaic power generation in Japan: An approach with principal component analysis," Renewable Energy, Elsevier, vol. 68(C), pages 403-413.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:403-413
    DOI: 10.1016/j.renene.2014.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paulescu, Marius & Badescu, Viorel & Brabec, Marek, 2013. "Tools for PV (photovoltaic) plant operators: Nowcasting of passing clouds," Energy, Elsevier, vol. 54(C), pages 104-112.
    2. Cao, J.C. & Cao, S.H., 2006. "Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis," Energy, Elsevier, vol. 31(15), pages 3435-3445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierro, Marco & Gentili, Damiano & Liolli, Fabio Romano & Cornaro, Cristina & Moser, David & Betti, Alessandro & Moschella, Michela & Collino, Elena & Ronzio, Dario & van der Meer, Dennis, 2022. "Progress in regional PV power forecasting: A sensitivity analysis on the Italian case study," Renewable Energy, Elsevier, vol. 189(C), pages 983-996.
    2. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    3. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    4. Xiaomei Wu & Chun Sing Lai & Chenchen Bai & Loi Lei Lai & Qi Zhang & Bo Liu, 2020. "Optimal Kernel ELM and Variational Mode Decomposition for Probabilistic PV Power Prediction," Energies, MDPI, vol. 13(14), pages 1-21, July.
    5. Dengchang Ma & Rongyi Xie & Guobing Pan & Zongxu Zuo & Lidong Chu & Jing Ouyang, 2023. "Photovoltaic Power Output Prediction Based on TabNet for Regional Distributed Photovoltaic Stations Group," Energies, MDPI, vol. 16(15), pages 1-22, July.
    6. Yang, Mao & Zhao, Meng & Huang, Dawei & Su, Xin, 2022. "A composite framework for photovoltaic day-ahead power prediction based on dual clustering of dynamic time warping distance and deep autoencoder," Renewable Energy, Elsevier, vol. 194(C), pages 659-673.
    7. Taeyoung Kim & Jinho Kim, 2021. "A Regional Day-Ahead Rooftop Photovoltaic Generation Forecasting Model Considering Unauthorized Photovoltaic Installation," Energies, MDPI, vol. 14(14), pages 1-22, July.
    8. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2020. "Italian protocol for massive solar integration: Imbalance mitigation strategies," Renewable Energy, Elsevier, vol. 153(C), pages 725-739.
    9. Yaser I. Alamin & Mensah K. Anaty & José Domingo Álvarez Hervás & Khalid Bouziane & Manuel Pérez García & Reda Yaagoubi & María del Mar Castilla & Merouan Belkasmi & Mohammed Aggour, 2020. "Very Short-Term Power Forecasting of High Concentrator Photovoltaic Power Facility by Implementing Artificial Neural Network," Energies, MDPI, vol. 13(13), pages 1-16, July.
    10. Larson, David P. & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest," Renewable Energy, Elsevier, vol. 91(C), pages 11-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    2. Di Piazza, A. & Di Piazza, M.C. & La Tona, G. & Luna, M., 2021. "An artificial neural network-based forecasting model of energy-related time series for electrical grid management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 294-305.
    3. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
    4. Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2015. "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance," Energy, Elsevier, vol. 82(C), pages 570-577.
    5. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
    7. Junguo, Hu & Guomo, Zhou & Xiaojun, Xu, 2013. "Using an improved back propagation neural network to study spatial distribution of sunshine illumination from sensor network data," Ecological Modelling, Elsevier, vol. 266(C), pages 86-96.
    8. Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
    9. Reikard, Gordon & Robertson, Bryson & Bidlot, Jean-Raymond, 2015. "Combining wave energy with wind and solar: Short-term forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 442-456.
    10. Voyant, Cyril & Paoli, Christophe & Muselli, Marc & Nivet, Marie-Laure, 2013. "Multi-horizon solar radiation forecasting for Mediterranean locations using time series models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 44-52.
    11. Yang, Dazhi & Sharma, Vishal & Ye, Zhen & Lim, Lihong Idris & Zhao, Lu & Aryaputera, Aloysius W., 2015. "Forecasting of global horizontal irradiance by exponential smoothing, using decompositions," Energy, Elsevier, vol. 81(C), pages 111-119.
    12. Paulescu, Marius & Paulescu, Eugenia, 2019. "Short-term forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 143(C), pages 985-994.
    13. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    14. Gandoman, Foad H. & Raeisi, Fatima & Ahmadi, Abdollah, 2016. "A literature review on estimating of PV-array hourly power under cloudy weather conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 579-592.
    15. Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances," Renewable Energy, Elsevier, vol. 80(C), pages 770-782.
    16. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    17. Wang, Yamin & Wu, Lei, 2016. "On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation," Energy, Elsevier, vol. 112(C), pages 208-220.
    18. Monjoly, Stéphanie & André, Maïna & Calif, Rudy & Soubdhan, Ted, 2017. "Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach," Energy, Elsevier, vol. 119(C), pages 288-298.
    19. Fei Wang & Zengqiang Mi & Shi Su & Hongshan Zhao, 2012. "Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters," Energies, MDPI, vol. 5(5), pages 1-16, May.
    20. Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:403-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.