Photovoltaic Power Output Prediction Based on TabNet for Regional Distributed Photovoltaic Stations Group
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- da Silva Fonseca Junior, Joao Gari & Oozeki, Takashi & Ohtake, Hideaki & Shimose, Ken-ichi & Takashima, Takumi & Ogimoto, Kazuhiko, 2014. "Regional forecasts and smoothing effect of photovoltaic power generation in Japan: An approach with principal component analysis," Renewable Energy, Elsevier, vol. 68(C), pages 403-413.
- Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
- Shaker, Hamid & Manfre, Daniel & Zareipour, Hamidreza, 2020. "Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites," Renewable Energy, Elsevier, vol. 147(P1), pages 1861-1869.
- Lei Fu & Yiling Yang & Xiaolong Yao & Xufen Jiao & Tiantian Zhu, 2019. "A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion," Energies, MDPI, vol. 12(20), pages 1-23, October.
- Koster, Daniel & Minette, Frank & Braun, Christian & O'Nagy, Oliver, 2019. "Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg," Renewable Energy, Elsevier, vol. 132(C), pages 455-470.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenxiang Luo & Yang Shen & Zewen Li & Fangming Deng, 2025. "Distributed Photovoltaic Short-Term Power Prediction Based on Personalized Federated Multi-Task Learning," Energies, MDPI, vol. 18(7), pages 1-17, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Taeyoung Kim & Jinho Kim, 2021. "A Regional Day-Ahead Rooftop Photovoltaic Generation Forecasting Model Considering Unauthorized Photovoltaic Installation," Energies, MDPI, vol. 14(14), pages 1-22, July.
- Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
- Pierro, Marco & Gentili, Damiano & Liolli, Fabio Romano & Cornaro, Cristina & Moser, David & Betti, Alessandro & Moschella, Michela & Collino, Elena & Ronzio, Dario & van der Meer, Dennis, 2022. "Progress in regional PV power forecasting: A sensitivity analysis on the Italian case study," Renewable Energy, Elsevier, vol. 189(C), pages 983-996.
- Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
- Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
- Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
- Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
- Aqachmar, Zineb & Allouhi, Amine & Jamil, Abdelmajid & Gagouch, Belgacem & Kousksou, Tarik, 2019. "Parabolic trough solar thermal power plant Noor I in Morocco," Energy, Elsevier, vol. 178(C), pages 572-584.
- Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
- Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
- Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
- Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh & Shaker, Hamid Reza, 2021. "High dimensional very short-term solar power forecasting based on a data-driven heuristic method," Energy, Elsevier, vol. 219(C).
- Krystyna Kurowska & Hubert Kryszk & Stanisław Bielski, 2022. "Location and Technical Requirements for Photovoltaic Power Stations in Poland," Energies, MDPI, vol. 15(7), pages 1-16, April.
- Yan Zhang & Yang Shen & Rui Zhu & Zhu Chen & Tao Guo & Quan Lv, 2025. "Two-Stage Real-Time Frequency Regulation Strategy of Combined Heat and Power Units with Energy Storage," Energies, MDPI, vol. 18(8), pages 1-21, April.
- Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
- Keda Pan & Changhong Xie & Chun Sing Lai & Dongxiao Wang & Loi Lei Lai, 2020. "Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems," Forecasting, MDPI, vol. 2(4), pages 1-18, November.
- Barbosa, Juliana & Dias, Luís P. & Simoes, Sofia G. & Seixas, Júlia, 2020. "When is the sun going to shine for the Brazilian energy sector? A story of how modelling affects solar electricity," Renewable Energy, Elsevier, vol. 162(C), pages 1684-1702.
- Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
- Ruifeng Shi & Penghui Zhang & Jie Zhang & Li Niu & Xiaoting Han, 2020. "Multidispatch for Microgrid including Renewable Energy and Electric Vehicles with Robust Optimization Algorithm," Energies, MDPI, vol. 13(11), pages 1-15, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5649-:d:1203881. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.