IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1861-1869.html
   My bibliography  Save this article

Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites

Author

Listed:
  • Shaker, Hamid
  • Manfre, Daniel
  • Zareipour, Hamidreza

Abstract

Significant growth of behind-the-meter solar Photovoltaic (PV) power generation in recent years is changing the shape of the net demand for electricity from electrical grids. In this work, a framework is proposed to forecast the aggregated power generation of a large fleet of small behind-the-meter solar PV sites. The outputs of those sites are not individually measured and thus, the aggregated output is “invisible” to power system operators. The proposed model uses the available historical power generation data of a very limited number of representative sites in the region, along with Numerical Weather Predictions (NWP) inputs. This way, it is not necessary to constantly monitor all the sites in the region. Fuzzy Arithmetic Wavelet Neural Networks (FAWNN) are used to develop the forecasting engine, providing fuzzy confidence intervals for any desired level, so this methodology can handle various shapes of uncertainties in the input data. The proposed model is validated using actual PV generation data from 6673 sites in California. The simulation results have shown that the proposed approach is capable of forecasting BTM solar PV fleet despite using limited data. The root mean squared error for the forecasts was found to be 3% for the California region.

Suggested Citation

  • Shaker, Hamid & Manfre, Daniel & Zareipour, Hamidreza, 2020. "Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites," Renewable Energy, Elsevier, vol. 147(P1), pages 1861-1869.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1861-1869
    DOI: 10.1016/j.renene.2019.09.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Huan & Zhang, Zijun & Su, Yan, 2014. "Analysis of daily solar power prediction with data-driven approaches," Applied Energy, Elsevier, vol. 126(C), pages 29-37.
    2. Nobre, André M. & Severiano, Carlos A. & Karthik, Shravan & Kubis, Marek & Zhao, Lu & Martins, Fernando R. & Pereira, Enio B. & Rüther, Ricardo & Reindl, Thomas, 2016. "PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore," Renewable Energy, Elsevier, vol. 94(C), pages 496-509.
    3. Chen, S.X. & Gooi, H.B. & Wang, M.Q., 2013. "Solar radiation forecast based on fuzzy logic and neural networks," Renewable Energy, Elsevier, vol. 60(C), pages 195-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierro, Marco & Gentili, Damiano & Liolli, Fabio Romano & Cornaro, Cristina & Moser, David & Betti, Alessandro & Moschella, Michela & Collino, Elena & Ronzio, Dario & van der Meer, Dennis, 2022. "Progress in regional PV power forecasting: A sensitivity analysis on the Italian case study," Renewable Energy, Elsevier, vol. 189(C), pages 983-996.
    2. Yuan-Kang Wu & Yi-Hui Lai & Cheng-Liang Huang & Nguyen Thi Bich Phuong & Wen-Shan Tan, 2022. "Artificial Intelligence Applications in Estimating Invisible Solar Power Generation," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    4. Keda Pan & Changhong Xie & Chun Sing Lai & Dongxiao Wang & Loi Lei Lai, 2020. "Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems," Forecasting, MDPI, vol. 2(4), pages 1-18, November.
    5. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    6. Dengchang Ma & Rongyi Xie & Guobing Pan & Zongxu Zuo & Lidong Chu & Jing Ouyang, 2023. "Photovoltaic Power Output Prediction Based on TabNet for Regional Distributed Photovoltaic Stations Group," Energies, MDPI, vol. 16(15), pages 1-22, July.
    7. Wen, Haoran & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Wen, Huiqing & Yan, Ke, 2023. "A regional solar forecasting approach using generative adversarial networks with solar irradiance maps," Renewable Energy, Elsevier, vol. 216(C).
    8. Hidayatno, Akhmad & Setiawan, Andri D. & Wikananda Supartha, I Made & Moeis, Armand O. & Rahman, Irvanu & Widiono, Eddie, 2020. "Investigating policies on improving household rooftop photovoltaics adoption in Indonesia," Renewable Energy, Elsevier, vol. 156(C), pages 731-742.
    9. Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
    10. Taeyoung Kim & Jinho Kim, 2021. "A Regional Day-Ahead Rooftop Photovoltaic Generation Forecasting Model Considering Unauthorized Photovoltaic Installation," Energies, MDPI, vol. 14(14), pages 1-22, July.
    11. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Marco Pierro & Fabio Romano Liolli & Damiano Gentili & Marcello Petitta & Richard Perez & David Moser & Cristina Cornaro, 2022. "Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System," Energies, MDPI, vol. 15(23), pages 1-28, November.
    13. Rong-Jong Wai & Pin-Xian Lai, 2022. "Design of Intelligent Solar PV Power Generation Forecasting Mechanism Combined with Weather Information under Lack of Real-Time Power Generation Data," Energies, MDPI, vol. 15(10), pages 1-30, May.
    14. Ji-Won Cha & Sung-Kwan Joo, 2021. "Probabilistic Short-Term Load Forecasting Incorporating Behind-the-Meter (BTM) Photovoltaic (PV) Generation and Battery Energy Storage Systems (BESSs)," Energies, MDPI, vol. 14(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei & Xu, Zhao & McCulloch, Malcolm D. & Wong, Kit Po, 2017. "A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 439-451.
    2. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    3. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    4. Fouad Agramelal & Mohamed Sadik & Youssef Moubarak & Saad Abouzahir, 2023. "Smart Street Light Control: A Review on Methods, Innovations, and Extended Applications," Energies, MDPI, vol. 16(21), pages 1-42, November.
    5. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    6. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    7. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    8. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    9. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    10. Wahiba Yaïci & Michela Longo & Evgueniy Entchev & Federica Foiadelli, 2017. "Simulation Study on the Effect of Reduced Inputs of Artificial Neural Networks on the Predictive Performance of the Solar Energy System," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    11. Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    12. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
    13. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    14. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    15. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    16. Peng, Tian & Zhang, Chu & Zhou, Jianzhong & Nazir, Muhammad Shahzad, 2021. "An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting," Energy, Elsevier, vol. 221(C).
    17. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
    18. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
    19. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    20. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1861-1869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.