ML-Enabled Solar PV Electricity Generation Projection for a Large Academic Campus to Reduce Onsite CO 2 Emissions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chang, Soowon & Cho, Junyoung & Heo, Jae & Kang, Junsuk & Kobashi, Takuro, 2022. "Energy infrastructure transitions with PV and EV combined systems using techno-economic analyses for decarbonization in cities," Applied Energy, Elsevier, vol. 319(C).
- Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
- Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
- Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jia, Min & Zhang, Zhe & Zhang, Li & Zhao, Liang & Lu, Xinbo & Li, Linyan & Ruan, Jianhui & Wu, Yunlong & He, Zhuoming & Liu, Mei & Jiang, Lingling & Gao, Yajing & Wu, Pengcheng & Zhu, Shuying & Niu, M, 2024. "Optimization of electricity generation and assessment of provincial grid emission factors from 2020 to 2060 in China," Applied Energy, Elsevier, vol. 373(C).
- Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
- Nhat-Duc Hoang & Quoc-Lam Nguyen, 2025. "Geospatial Analysis and Machine Learning Framework for Urban Heat Island Intensity Prediction: Natural Gradient Boosting and Deep Neural Network Regressors with Multisource Remote Sensing Data," Sustainability, MDPI, vol. 17(10), pages 1-26, May.
- Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
- Eduardo Gomes & Augusto Esteves & Hugo Morais & Lucas Pereira, 2025. "Leveraging Explainable Artificial Intelligence in Solar Photovoltaic Mappings: Model Explanations and Feature Selection," Energies, MDPI, vol. 18(5), pages 1-17, March.
- Zhou, Daixuan & Liu, Yujin & Wang, Xu & Wang, Fuxing & Jia, Yan, 2025. "Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM," Energy, Elsevier, vol. 318(C).
- Liu, Junling & Li, Mengyue & Xue, Liya & Kobashi, Takuro, 2022. "A framework to evaluate the energy-environment-economic impacts of developing rooftop photovoltaics integrated with electric vehicles at city level," Renewable Energy, Elsevier, vol. 200(C), pages 647-657.
- Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
- Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
- Olleik, Majd & Tarhini, Hussein & Auer, Hans, 2025. "Integrating upstream natural gas and electricity planning in times of energy transition," Applied Energy, Elsevier, vol. 377(PB).
- Tahir, Muhammad Faizan & Yousaf, Muhammad Zain & Tzes, Anthony & El Moursi, Mohamed Shawky & El-Fouly, Tarek H.M., 2024. "Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
- Park, Musik & Wang, Zhiyuan & Li, Lanyu & Wang, Xiaonan, 2023. "Multi-objective building energy system optimization considering EV infrastructure," Applied Energy, Elsevier, vol. 332(C).
- van Zyl, Corne & Ye, Xianming & Naidoo, Raj, 2024. "Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: A comparative analysis of Grad-CAM and SHAP," Applied Energy, Elsevier, vol. 353(PA).
- Xinghua Wang & Zilv Li & Chenyang Fu & Xixian Liu & Weikang Yang & Xiangyuan Huang & Longfa Yang & Jianhui Wu & Zhuoli Zhao, 2024. "Short-Term Photovoltaic Power Probabilistic Forecasting Based on Temporal Decomposition and Vine Copula," Sustainability, MDPI, vol. 16(19), pages 1-25, September.
- Xiong, Binyu & Chen, Yuntian & Chen, Dali & Fu, Jun & Zhang, Dongxiao, 2025. "Deep probabilistic solar power forecasting with Transformer and Gaussian process approximation," Applied Energy, Elsevier, vol. 382(C).
- Calise, F. & Cappiello, F.L. & Cimmino, L. & Cuomo, F.P. & Vicidomini, M., 2025. "A 5th generation district heating cooling network integrated with a phase change material thermal energy storage: A dynamic thermoeconomic analysis," Applied Energy, Elsevier, vol. 389(C).
- Deroubaix, Paul & Kobashi, Takuro & Gurriaran, Léna & Benkhelifa, Fouzi & Ciais, Philippe & Tanaka, Katsumasa, 2023. "SolarEV City Concept for Paris," Applied Energy, Elsevier, vol. 350(C).
- Franko Pandžić & Tomislav Capuder, 2023. "Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and Relevant Data Sources," Energies, MDPI, vol. 17(1), pages 1-19, December.
- Paweł Piotrowski & Marcin Kopyt, 2024. "Short-Term Forecasts of Energy Generation in a Solar Power Plant Using Various Machine Learning Models, along with Ensemble and Hybrid Methods," Energies, MDPI, vol. 17(17), pages 1-24, August.
- Han, Tian & Li, Ruimeng & Wang, Xiao & Wang, Ying & Chen, Kang & Peng, Huaiwu & Gao, Zhenxin & Wang, Nannan & Peng, Qinke, 2024. "Intra-hour solar irradiance forecasting using topology data analysis and physics-driven deep learning," Renewable Energy, Elsevier, vol. 224(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6188-:d:1539210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.