IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v380y2025ics0306261924023377.html
   My bibliography  Save this article

Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting

Author

Listed:
  • Zhao, Yongning
  • Zhao, Yuan
  • Liao, Haohan
  • Pan, Shiji
  • Zheng, Yingying

Abstract

Interpreting well-performing wind power forecasting (WPF) models is essential to advance more trustworthy and accurate forecasting methodologies. Current research primarily focuses on interpreting black-box deep learning models, overlooking self-interpreting models that can directly indicate feature importance but fail to explain the underlying reasons. Self-interpreting regression models based on the least absolute shrinkage and selection operator (LASSO) excel in WPF. Therefore, it is crucial to explore their underlying decision logic and the practical implications of their coefficients to extract beneficial domain knowledge. An interpreting framework is proposed to elucidate the decision logic of the LASSO regression in WPF considering spatio-temporal correlations. The framework includes four main components. Firstly, a spatio-temporal correlation quantification system is established for feature selection for target wind farms, utilizing metrics that reflect spatial correlations, temporal fluctuations, geostatistics, and causalities of wind farms’ power output. Secondly, feature matching analysis is performed by comparing the features selected and ranked by the quantification system with those selected by the LASSO model. Thirdly, based on the spatio-temporal patterns and key features identified from the preliminary feature matching analysis, a feature perturbation analysis is conducted by modifying the feature space to assess how changes in spatio-temporal features impact forecasting accuracy. Finally, a sensitivity analysis is conducted by setting different LASSO parameters to verify the consistency of the extracted domain knowledge. The proposed framework is applied to two datasets, yielding substantial qualitative and quantitative results. Critical factors affecting WPF accuracy, such as feature collinearity, the number and spatial dispersion of reference wind farms, and how these factors influence forecasting accuracy are effectively identified. The framework and findings are effective, consistent and demonstrates generalizability across different datasets.

Suggested Citation

  • Zhao, Yongning & Zhao, Yuan & Liao, Haohan & Pan, Shiji & Zheng, Yingying, 2025. "Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting," Applied Energy, Elsevier, vol. 380(C).
  • Handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023377
    DOI: 10.1016/j.apenergy.2024.124954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924023377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hounaida Daly & Badreldin Mohamed Ahmed Abdulrahman & Sumaya Awad Khader Ahmed & Abderhim Elshazali Yahia Abdallah & Saeed Hassan Elaageb Hasab Elkarim & Mastora Sahal Gomaa Sahal & Waleed Nureldeen &, 2024. "The dynamic relationships between oil products consumption and economic growth in Saudi Arabia: Using ARDL cointegration and Toda-Yamamoto Granger causality analysis," Post-Print halshs-04860044, HAL.
    2. Zhao, Yongning & Pan, Shiji & Zhao, Yuan & Liao, Haohan & Ye, Lin & Zheng, Yingying, 2024. "Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration," Energy, Elsevier, vol. 288(C).
    3. Messner, Jakob W. & Pinson, Pierre, 2019. "Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1485-1498.
    4. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    5. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).
    6. Leerbeck, Kenneth & Bacher, Peder & Junker, Rune Grønborg & Goranović, Goran & Corradi, Olivier & Ebrahimy, Razgar & Tveit, Anna & Madsen, Henrik, 2020. "Short-term forecasting of CO2 emission intensity in power grids by machine learning," Applied Energy, Elsevier, vol. 277(C).
    7. Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
    8. Eskandari, Hamidreza & Saadatmand, Hassan & Ramzan, Muhammad & Mousapour, Mobina, 2024. "Innovative framework for accurate and transparent forecasting of energy consumption: A fusion of feature selection and interpretable machine learning," Applied Energy, Elsevier, vol. 366(C).
    9. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    10. Draxl, Caroline & Clifton, Andrew & Hodge, Bri-Mathias & McCaa, Jim, 2015. "The Wind Integration National Dataset (WIND) Toolkit," Applied Energy, Elsevier, vol. 151(C), pages 355-366.
    11. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2023. "Wind power forecasting: A hybrid forecasting model and multi-task learning-based framework," Energy, Elsevier, vol. 278(PA).
    12. Yu Nakashima & Atsushi Kawakami & Yasushi Ogasawara & Masatoshi Maeki & Manabu Tokeshi & Tohru Dairi & Hiroyuki Morita, 2023. "Structure of lasso peptide epimerase MslH reveals metal-dependent acid/base catalytic mechanism," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    14. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
    15. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    16. Simeunović, Jelena & Schubnel, Baptiste & Alet, Pierre-Jean & Carrillo, Rafael E. & Frossard, Pascal, 2022. "Interpretable temporal-spatial graph attention network for multi-site PV power forecasting," Applied Energy, Elsevier, vol. 327(C).
    17. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Da & Yang, Mao & Zhang, Wei & Ma, Chenglian & Su, Xin, 2025. "Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining," Applied Energy, Elsevier, vol. 380(C).
    2. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    3. Franko Pandžić & Tomislav Capuder, 2023. "Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and Relevant Data Sources," Energies, MDPI, vol. 17(1), pages 1-19, December.
    4. Wu, Tangjie & Ling, Qiang, 2024. "STELLM: Spatio-temporal enhanced pre-trained large language model for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
    5. Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao, 2024. "Short-term wind speed interval prediction using improved quality-driven loss based gated multi-scale convolutional sequence model," Energy, Elsevier, vol. 300(C).
    6. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    7. Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe & Ruan, Yingjun, 2025. "A revolutionary neural network architecture with interpretability and flexibility based on Kolmogorov–Arnold for solar radiation and temperature forecasting," Applied Energy, Elsevier, vol. 378(PA).
    8. Pierre Pinson & Liyang Han & Jalal Kazempour, 2022. "Regression markets and application to energy forecasting," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 533-573, October.
    9. Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
    10. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    11. Zhu, Jianhua & He, Yaoyao, 2025. "A novel hybrid model based on evolving multi-quantile long and short-term memory neural network for ultra-short-term probabilistic forecasting of photovoltaic power," Applied Energy, Elsevier, vol. 377(PC).
    12. Wen, Honglin, 2024. "Probabilistic wind power forecasting resilient to missing values: An adaptive quantile regression approach," Energy, Elsevier, vol. 300(C).
    13. Jiafei Huan & Li Deng & Yue Zhu & Shangguang Jiang & Fei Qi, 2024. "Short-to-Medium-Term Wind Power Forecasting through Enhanced Transformer and Improved EMD Integration," Energies, MDPI, vol. 17(10), pages 1-22, May.
    14. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhou, Qingyu & Fan, Hang, 2023. "Series-wise attention network for wind power forecasting considering temporal lag of numerical weather prediction," Applied Energy, Elsevier, vol. 336(C).
    15. Zhao, Yongning & Liao, Haohan & Zhao, Yuan & Pan, Shiji, 2025. "Data-augmented trend-fluctuation representations by interpretable contrastive learning for wind power forecasting," Applied Energy, Elsevier, vol. 380(C).
    16. Tai, Sheng-Lun & Gaudet, Brian & Feng, Sha & Krishnamurthy, Raghavendra & Berg, Larry K. & Fast, Jerome D., 2025. "Characterizing model uncertainties in simulated coast-to-offshore wind over the northeast U.S. using multi-platform measurements from the TCAP field campaign," Renewable Energy, Elsevier, vol. 239(C).
    17. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    18. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    19. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    20. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.