IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4894-d1664995.html
   My bibliography  Save this article

Broad Random Forest: A Lightweight Prediction Model for Short-Term Wind Power by Fusing Broad Learning and Random Forest

Author

Listed:
  • Yingrui Chen

    (School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Jiarong Shi

    (School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
    State Key Laboratory of Green Building, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

As an important component of sustainable development and energy transition, wind power is rapidly rising. This paper selects the time series of historical wind power as features and establishes a lightweight prediction model called a broad random forest model (BRF). The proposed model fully uses the feature representation ability of the broad learning system (BLS) and the fast computational speed of random forest (RF). To begin, the example sets are created with a sliding window for the wind power series. Then, the processed data are input into the BLS module. The feature-expansion function of BLS is fully utilized to generate mapped features and enhanced features. These two types of features are reconstructed to obtain a new sample set. Next, the RF model is established for the new sample set to make predictions. The prediction results of all decision trees are superimposed, and their average value is taken as the final prediction result. Finally, the predicted results of BRF are compared with other mainstream machine learning and deep learning methods. The experimental results show that the proposed model has the best predictive performance on the wind power datasets, with an improvement of 0.22% in R 2 at least.

Suggested Citation

  • Yingrui Chen & Jiarong Shi, 2025. "Broad Random Forest: A Lightweight Prediction Model for Short-Term Wind Power by Fusing Broad Learning and Random Forest," Sustainability, MDPI, vol. 17(11), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4894-:d:1664995
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yonggang & Zhao, Kaixing & Hao, Yue & Yao, Yilin, 2024. "Short-term wind power prediction using a novel model based on butterfly optimization algorithm-variational mode decomposition-long short-term memory," Applied Energy, Elsevier, vol. 366(C).
    2. Qiu, Lihong & Ma, Wentao & Feng, Xiaoyang & Dai, Jiahui & Dong, Yuzhuo & Duan, Jiandong & Chen, Badong, 2024. "A hybrid PV cluster power prediction model using BLS with GMCC and error correction via RVM considering an improved statistical upscaling technique," Applied Energy, Elsevier, vol. 359(C).
    3. Ge, Chang & Yan, Jie & Zhang, Haoran & Li, Yuhao & Wang, Han & Liu, Yongqian, 2024. "Joint short-term power forecasting of hydro-wind-photovoltaic considering spatiotemporal delay of weather processes," Renewable Energy, Elsevier, vol. 237(PB).
    4. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    5. Arooj, Qumrish, 2024. "FedWindT: Federated learning assisted transformer architecture for collaborative and secure wind power forecasting in diverse conditions," Energy, Elsevier, vol. 309(C).
    6. Qiu, Hong & Shi, Kaikai & Wang, Renfang & Zhang, Liang & Liu, Xiufeng & Cheng, Xu, 2024. "A novel temporal–spatial graph neural network for wind power forecasting considering blockage effects," Renewable Energy, Elsevier, vol. 227(C).
    7. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    8. Zhu, Yingqin & Liu, Yue & Wang, Nan & Zhang, ZhaoZhao & Li, YuanQiang, 2025. "Real-time Error Compensation Transfer Learning with Echo State Networks for Enhanced Wind Power Prediction," Applied Energy, Elsevier, vol. 379(C).
    9. Lu, Peng & Yang, Jianbin & Ye, Lin & Zhang, Ning & Wang, Yaqing & Di, Jingyi & Gao, Ze & Wang, Cheng & Liu, Mingyang, 2024. "A novel adaptively combined model based on induced ordered weighted averaging for wind power forecasting," Renewable Energy, Elsevier, vol. 226(C).
    10. Deng, Jiewen & Xiao, Zhao & Zhao, Qiancheng & Zhan, Jun & Tao, Jie & Liu, Minghua & Song, Dongran, 2024. "Wind turbine short-term power forecasting method based on hybrid probabilistic neural network," Energy, Elsevier, vol. 313(C).
    11. Zhang, Chu & Tao, Zihan & Xiong, Jinlin & Qian, Shijie & Fu, Yongyan & Ji, Jie & Nazir, Muhammad Shahzad & Peng, Tian, 2024. "Research and application of a novel weight-based evolutionary ensemble model using principal component analysis for wind power prediction," Renewable Energy, Elsevier, vol. 232(C).
    12. Peng, Xinghao & Li, Yanting & Tsung, Fugee, 2024. "A graph attention network with spatio-temporal wind propagation graph for wind power ramp events prediction," Renewable Energy, Elsevier, vol. 236(C).
    13. Liu, Lei & Liu, Jicheng & Ye, Yu & Liu, Hui & Chen, Kun & Li, Dong & Dong, Xue & Sun, Mingzhai, 2023. "Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty," Renewable Energy, Elsevier, vol. 205(C), pages 598-607.
    14. Du, Ruoyun & Chen, Hongfei & Yu, Min & Li, Wanying & Niu, Dongxiao & Wang, Keke & Zhang, Zuozhong, 2024. "3DTCN-CBAM-LSTM short-term power multi-step prediction model for offshore wind power based on data space and multi-field cluster spatio-temporal correlation," Applied Energy, Elsevier, vol. 376(PA).
    15. Yu, Chuanjin & Li, Yongle & Chen, Qian & Lai, Xiaopan & Zhao, Liyang, 2022. "Matrix-based wavelet transformation embedded in recurrent neural networks for wind speed prediction," Applied Energy, Elsevier, vol. 324(C).
    16. Zhao, Yongning & Zhao, Yuan & Liao, Haohan & Pan, Shiji & Zheng, Yingying, 2025. "Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting," Applied Energy, Elsevier, vol. 380(C).
    17. Liu, Y. & Li, Y.P. & Huang, G.H. & Lv, J. & Zhai, X.B. & Li, Y.F. & Zhou, B.Y., 2023. "Development of an integrated model on the basis of GCMs-RF-FA for predicting wind energy resources under climate change impact: A case study of Jing-Jin-Ji region in China," Renewable Energy, Elsevier, vol. 219(P2).
    18. Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
    19. Yang, Mao & Guo, Yunfeng & Huang, Tao & Fan, Fulin & Ma, Chenglian & Fang, Guozhong, 2024. "Wind farm cluster power prediction based on graph deviation attention network with learnable graph structure and dynamic error correction during load peak and valley periods," Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Zhijian & Hou, Xinxing & Huang, ShiXun & Li, Di & He, Yang & Meng, Yan, 2025. "Probabilistic power forecasting for wind farm clusters using Moran-Graph network with posterior feedback attention mechanism," Energy, Elsevier, vol. 328(C).
    2. Yakai Yang & Zhenqing Liu & Zhongze Yu, 2025. "SA-STGCN: A Spectral-Attentive Spatio-Temporal Graph Convolutional Network for Wind Power Forecasting with Wavelet-Enhanced Multi-Scale Learning," Energies, MDPI, vol. 18(19), pages 1-20, October.
    3. Wang, Junjie & Huang, Wenyu & Ding, Yuanping & Dang, Yaoguo & Ye, Li, 2025. "Forecasting the electric power load based on a novel prediction model coupled with accumulative time-delay effects and periodic fluctuation characteristics," Energy, Elsevier, vol. 317(C).
    4. Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
    5. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    6. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    7. Guanhua Li & Haoran Chen & Shicong Sun & Tie Guo & Luyu Yang, 2025. "Research on Transmission Line Icing Prediction for Power System Based on Improved Snake Optimization Algorithm-Optimized Deep Hybrid Kernel Extreme Learning Machine," Energies, MDPI, vol. 18(17), pages 1-24, September.
    8. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    9. Jin, Huaiping & Zhang, Kehao & Fan, Shouyuan & Jin, Huaikang & Wang, Bin, 2024. "Wind power forecasting based on ensemble deep learning with surrogate-assisted evolutionary neural architecture search and many-objective federated learning," Energy, Elsevier, vol. 308(C).
    10. G. Ponkumar & S. Jayaprakash & Karthick Kanagarathinam, 2023. "Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis," Energies, MDPI, vol. 16(14), pages 1-24, July.
    11. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    12. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    13. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    14. Liu, Shuhan & Sun, Wenqiang, 2025. "Knowledge- and data-driven prediction of blast furnace gas generation and consumption in iron and steel sites," Applied Energy, Elsevier, vol. 390(C).
    15. Guodong Wu & Diangang Hu & Yongrui Zhang & Guangqing Bao & Ting He, 2024. "A Convolutional Neural Network–Long Short-Term Memory–Attention Solar Photovoltaic Power Prediction–Correction Model Based on the Division of Twenty-Four Solar Terms," Energies, MDPI, vol. 17(22), pages 1-19, November.
    16. Qingquan Lv & Jialin Zhang & Jianmei Zhang & Zhenzhen Zhang & Qiang Zhou & Pengfei Gao & Haozhe Zhang, 2025. "Short-Term Wind Power Prediction Model Based on PSO-CNN-LSTM," Energies, MDPI, vol. 18(13), pages 1-18, June.
    17. Tian, Lei & Gao, Yan & Yang, Haiyu & Wang, Renkang, 2025. "Multi-scenario long-term degradation prediction of PEMFC based on generative inference informer model," Applied Energy, Elsevier, vol. 377(PA).
    18. Yan Yan & Yong Qian & Yan Zhou, 2025. "Nonparametric Probabilistic Prediction of Ultra-Short-Term Wind Power Based on MultiFusion–ChronoNet–AMC," Energies, MDPI, vol. 18(7), pages 1-18, March.
    19. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    20. Han Qiu & Rong Hu & Jiaqing Chen & Zihao Yuan, 2025. "Short-Term Electricity Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Improved Sparrow Search Algorithm–Convolutional Neural Network–Bidirectional Lon," Mathematics, MDPI, vol. 13(5), pages 1-32, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4894-:d:1664995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.