Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zifa Liu & Xinyi Li & Haiyan Zhao, 2023. "Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction," Energies, MDPI, vol. 16(10), pages 1-24, May.
- David Barbosa de Alencar & Carolina De Mattos Affonso & Roberto Célio Limão de Oliveira & Jorge Laureano Moya Rodríguez & Jandecy Cabral Leite & José Carlos Reston Filho, 2017. "Different Models for Forecasting Wind Power Generation: Case Study," Energies, MDPI, vol. 10(12), pages 1-27, November.
- Liu, Lei & Liu, Jicheng & Ye, Yu & Liu, Hui & Chen, Kun & Li, Dong & Dong, Xue & Sun, Mingzhai, 2023. "Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty," Renewable Energy, Elsevier, vol. 205(C), pages 598-607.
- Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
- Hong, Ying-Yi & Rioflorido, Christian Lian Paulo P., 2019. "A hybrid deep learning-based neural network for 24-h ahead wind power forecasting," Applied Energy, Elsevier, vol. 250(C), pages 530-539.
- Anfeng Zhu & Qiancheng Zhao & Xian Wang & Ling Zhou, 2022. "Ultra-Short-Term Wind Power Combined Prediction Based on Complementary Ensemble Empirical Mode Decomposition, Whale Optimisation Algorithm, and Elman Network," Energies, MDPI, vol. 15(9), pages 1-17, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gökhan Ekinci & Harun Kemal Ozturk, 2025. "Forecasting Wind Farm Production in the Short, Medium, and Long Terms Using Various Machine Learning Algorithms," Energies, MDPI, vol. 18(5), pages 1-27, February.
- Marcin Kopyt & Paweł Piotrowski & Dariusz Baczyński, 2024. "Short-Term Energy Generation Forecasts at a Wind Farm—A Multi-Variant Comparison of the Effectiveness and Performance of Various Gradient-Boosted Decision Tree Models," Energies, MDPI, vol. 17(23), pages 1-21, December.
- Wang, Yonggang & Zhao, Kaixing & Hao, Yue & Yao, Yilin, 2024. "Short-term wind power prediction using a novel model based on butterfly optimization algorithm-variational mode decomposition-long short-term memory," Applied Energy, Elsevier, vol. 366(C).
- Zongxu Liu & Hui Guo & Yingshuai Zhang & Zongliang Zuo, 2025. "A Comprehensive Review of Wind Power Prediction Based on Machine Learning: Models, Applications, and Challenges," Energies, MDPI, vol. 18(2), pages 1-17, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Fang & Liu, Hui, 2024. "Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks," Applied Energy, Elsevier, vol. 376(PB).
- Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
- Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
- Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
- Chen, Yuejiang & He, Yingjing & Xiao, Jiang-Wen & Wang, Yan-Wu & Li, Yuanzheng, 2024. "Hybrid model based on similar power extraction and improved temporal convolutional network for probabilistic wind power forecasting," Energy, Elsevier, vol. 304(C).
- Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
- Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
- Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
- Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
- Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
- Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
- Jin, Huaiping & Zhang, Kehao & Fan, Shouyuan & Jin, Huaikang & Wang, Bin, 2024. "Wind power forecasting based on ensemble deep learning with surrogate-assisted evolutionary neural architecture search and many-objective federated learning," Energy, Elsevier, vol. 308(C).
- Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.
- Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
- Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
- Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
- Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
- Chia-Sheng Tu & Chih-Ming Hong & Hsi-Shan Huang & Chiung-Hsing Chen, 2020. "Short Term Wind Power Prediction Based on Data Regression and Enhanced Support Vector Machine," Energies, MDPI, vol. 13(23), pages 1-18, November.
More about this item
Keywords
wind energy; forecasting; machine learning; wind power prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5459-:d:1196625. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.