IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5459-d1196625.html
   My bibliography  Save this article

Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis

Author

Listed:
  • G. Ponkumar

    (School of Electrical and Electronics Engineering, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India)

  • S. Jayaprakash

    (School of Electrical and Electronics Engineering, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India)

  • Karthick Kanagarathinam

    (Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam 532 127, Andhra Pradesh, India)

Abstract

Accurate wind power forecasting plays a crucial role in the planning of unit commitments, maintenance scheduling, and maximizing profits for power traders. Uncertainty and changes in wind speeds pose challenges to the integration of wind power into the power system. Therefore, the reliable prediction of wind power output is a complex task with significant implications for the efficient operation of electricity grids. Developing effective and precise wind power prediction systems is essential for the cost-efficient operation and maintenance of modern wind turbines. This article focuses on the development of a very-short-term forecasting model using machine learning algorithms. The forecasting model is evaluated using LightGBM, random forest, CatBoost, and XGBoost machine learning algorithms with 16 selected parameters from the wind energy system. The performance of the machine learning-based wind energy forecasting is assessed using metrics such as mean absolute error (MAE), mean-squared error (MSE), root-mean-squared error (RMSE), and R-squared. The results indicate that the random forest algorithm performs well during training, while the CatBoost algorithm demonstrates superior performance, with an RMSE of 13.84 for the test set, as determined by 10-fold cross-validation.

Suggested Citation

  • G. Ponkumar & S. Jayaprakash & Karthick Kanagarathinam, 2023. "Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis," Energies, MDPI, vol. 16(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5459-:d:1196625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Barbosa de Alencar & Carolina De Mattos Affonso & Roberto Célio Limão de Oliveira & Jorge Laureano Moya Rodríguez & Jandecy Cabral Leite & José Carlos Reston Filho, 2017. "Different Models for Forecasting Wind Power Generation: Case Study," Energies, MDPI, vol. 10(12), pages 1-27, November.
    2. Anfeng Zhu & Qiancheng Zhao & Xian Wang & Ling Zhou, 2022. "Ultra-Short-Term Wind Power Combined Prediction Based on Complementary Ensemble Empirical Mode Decomposition, Whale Optimisation Algorithm, and Elman Network," Energies, MDPI, vol. 15(9), pages 1-17, April.
    3. Zifa Liu & Xinyi Li & Haiyan Zhao, 2023. "Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction," Energies, MDPI, vol. 16(10), pages 1-24, May.
    4. Liu, Lei & Liu, Jicheng & Ye, Yu & Liu, Hui & Chen, Kun & Li, Dong & Dong, Xue & Sun, Mingzhai, 2023. "Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty," Renewable Energy, Elsevier, vol. 205(C), pages 598-607.
    5. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    6. Hong, Ying-Yi & Rioflorido, Christian Lian Paulo P., 2019. "A hybrid deep learning-based neural network for 24-h ahead wind power forecasting," Applied Energy, Elsevier, vol. 250(C), pages 530-539.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    2. Yiqi Chu & Chengcai Li & Yefang Wang & Jing Li & Jian Li, 2016. "A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction," Energies, MDPI, vol. 9(11), pages 1-20, October.
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    5. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
    6. Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.
    7. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    8. Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
    9. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    10. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    11. Chia-Sheng Tu & Chih-Ming Hong & Hsi-Shan Huang & Chiung-Hsing Chen, 2020. "Short Term Wind Power Prediction Based on Data Regression and Enhanced Support Vector Machine," Energies, MDPI, vol. 13(23), pages 1-18, November.
    12. Dong, Yunxuan & Wang, Jing & Xiao, Ling & Fu, Tonglin, 2021. "Short-term wind speed time series forecasting based on a hybrid method with multiple objective optimization for non-convex target," Energy, Elsevier, vol. 215(PB).
    13. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    14. Chen, Hang & Wei, Shanbi & Yang, Wei & Liu, Shanchao, 2023. "Input wind speed forecasting for wind turbines based on spatio-temporal correlation," Renewable Energy, Elsevier, vol. 216(C).
    15. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    16. Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
    17. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
    18. Jung, Jaesung & Tam, Kwa-Sur, 2013. "A frequency domain approach to characterize and analyze wind speed patterns," Applied Energy, Elsevier, vol. 103(C), pages 435-443.
    19. Christy Pérez-Albornoz & Ángel Hernández-Gómez & Victor Ramirez & Damien Guilbert, 2023. "Forecast Optimization of Wind Speed in the North Coast of the Yucatan Peninsula, Using the Single and Double Exponential Method," Clean Technol., MDPI, vol. 5(2), pages 1-22, June.
    20. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5459-:d:1196625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.