IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225022005.html
   My bibliography  Save this article

Probabilistic power forecasting for wind farm clusters using Moran-Graph network with posterior feedback attention mechanism

Author

Listed:
  • Qu, Zhijian
  • Hou, Xinxing
  • Huang, ShiXun
  • Li, Di
  • He, Yang
  • Meng, Yan

Abstract

Predicting wind power generation precisely is key to optimizing wind energy use. This paper proposes a novel hybrid probabilistic forecasting model for wind farm cluster power output. First, to address the complex spatiotemporal interdependencies among multiple wind farms, a Moran-Graph network is proposed to extract synergistic features across wind farm clusters. To address the high volatility and non-stationarity of wind power, a hybrid decomposition method integrating sequential Variational Mode Decomposition (SVMD) and Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is proposed. The Refined Composite Multi-scale Weighted Permutation Entropy (RCMWPE) is then employed to quantify the complexity of each subsequence for optimal signal reconstruction. Finally, a Feedback Attention-based Multi-Stacking model (FAMM-Stacking) is developed, which integrates Hybrid Kernel Density Estimation (HKDE) to generate probabilistic forecasting results for wind farm cluster power output. Case studies on wind farm clusters in Northwest China demonstrate that, at identical confidence levels, the proposed model achieves superior prediction interval coverage probability (PICP) with narrower average bandwidth, outperforming benchmark models.

Suggested Citation

  • Qu, Zhijian & Hou, Xinxing & Huang, ShiXun & Li, Di & He, Yang & Meng, Yan, 2025. "Probabilistic power forecasting for wind farm clusters using Moran-Graph network with posterior feedback attention mechanism," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022005
    DOI: 10.1016/j.energy.2025.136558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225022005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Mao & Guo, Yunfeng & Huang, Tao & Zhang, Wei, 2025. "Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios," Applied Energy, Elsevier, vol. 377(PD).
    2. De Luca Peña, Laura Vittoria & Taelman, Sue Ellen & Bas, Bilge & Staes, Jan & Mertens, Jan & Clavreul, Julie & Préat, Nils & Dewulf, Jo, 2024. "Monetized (socio-)environmental handprint and footprint of an offshore windfarm in the Belgian Continental Shelf: An assessment of local, regional and global impacts," Applied Energy, Elsevier, vol. 353(PA).
    3. Wang, Yonggang & Zhao, Kaixing & Hao, Yue & Yao, Yilin, 2024. "Short-term wind power prediction using a novel model based on butterfly optimization algorithm-variational mode decomposition-long short-term memory," Applied Energy, Elsevier, vol. 366(C).
    4. Wang, Fei & Chen, Peng & Zhen, Zhao & Yin, Rui & Cao, Chunmei & Zhang, Yagang & Duić, Neven, 2022. "Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method," Applied Energy, Elsevier, vol. 323(C).
    5. Xiong, Zhanhang & Yao, Jianjiang & Huang, Yongmin & Yu, Zhaoxu & Liu, Yalei, 2024. "A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition," Applied Energy, Elsevier, vol. 353(PB).
    6. Qu, Zhijian & Li, Jian & Hou, Xinxing & Gui, Jianglin, 2023. "A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction," Energy, Elsevier, vol. 281(C).
    7. Arooj, Qumrish, 2024. "FedWindT: Federated learning assisted transformer architecture for collaborative and secure wind power forecasting in diverse conditions," Energy, Elsevier, vol. 309(C).
    8. Chen, Shijian & Shang, Pengjian, 2020. "Financial time series analysis using the relation between MPE and MWPE," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    9. Deng, Jiewen & Xiao, Zhao & Zhao, Qiancheng & Zhan, Jun & Tao, Jie & Liu, Minghua & Song, Dongran, 2024. "Wind turbine short-term power forecasting method based on hybrid probabilistic neural network," Energy, Elsevier, vol. 313(C).
    10. Shang, Zhihao & Chen, Yanhua & Wen, Quan & Ruan, Xiaolong, 2025. "Multi-step ahead wind speed forecasting approach coupling PSR, NNCT-based multi-model fusion and a new optimization algorithm," Renewable Energy, Elsevier, vol. 238(C).
    11. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    12. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    13. Qu, Zhijian & Hou, Xinxing & Li, Jian & Hu, Wenbo, 2024. "Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation," Energy, Elsevier, vol. 290(C).
    14. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    15. Wang, Zhongliang & Zhu, Hongyu & Zhang, Dongdong & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Modelling of wind and photovoltaic power output considering dynamic spatio-temporal correlation," Applied Energy, Elsevier, vol. 352(C).
    16. Hu, Huanling & Wang, Lin & Zhang, Dabin & Ling, Liwen, 2023. "Rolling decomposition method in fusion with echo state network for wind speed forecasting," Renewable Energy, Elsevier, vol. 216(C).
    17. Yang, Mao & Guo, Yunfeng & Huang, Tao & Fan, Fulin & Ma, Chenglian & Fang, Guozhong, 2024. "Wind farm cluster power prediction based on graph deviation attention network with learnable graph structure and dynamic error correction during load peak and valley periods," Energy, Elsevier, vol. 312(C).
    18. Hanifi, Shahram & Zare-Behtash, Hossein & Cammarano, Andrea & Lotfian, Saeid, 2023. "Offshore wind power forecasting based on WPD and optimised deep learning methods," Renewable Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingrui Chen & Jiarong Shi, 2025. "Broad Random Forest: A Lightweight Prediction Model for Short-Term Wind Power by Fusing Broad Learning and Random Forest," Sustainability, MDPI, vol. 17(11), pages 1-16, May.
    2. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    3. Yang, Mao & Jiang, Yuxi & Xu, Chuanyu & Wang, Bo & Wang, Zhao & Su, Xin, 2025. "Day-ahead wind farm cluster power prediction based on trend categorization and spatial information integration model," Applied Energy, Elsevier, vol. 388(C).
    4. Chen, Juntao & Fu, Xueying & Zhang, Lingli & Shen, Haoye & Wu, Jibo, 2024. "A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms," Energy, Elsevier, vol. 308(C).
    5. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    6. Qu, Zhijian & Hou, Xinxing & Li, Jian & Hu, Wenbo, 2024. "Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation," Energy, Elsevier, vol. 290(C).
    7. Xuejun Chen & Ying Wang & Haitao Zhang & Jianzhou Wang, 2024. "A novel hybrid forecasting model with feature selection and deep learning for wind speed research," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1682-1705, August.
    8. Meng, Anbo & Zhang, Haitao & Dai, Zhongfu & Xian, Zikang & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhu, Jianbin & Li, Hanhong & Yin, Yiding & Liu, Jiawei & Tang, Yanshu & Zhang, Bin & Yin, Hao, 2024. "An adaptive distribution-matched recurrent network for wind power prediction using time-series distribution period division," Energy, Elsevier, vol. 299(C).
    9. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    10. Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
    11. Mingxiang Li & Tianyi Zhang & Haizhu Yang & Kun Liu, 2024. "Multiple Load Forecasting of Integrated Renewable Energy System Based on TCN-FECAM-Informer," Energies, MDPI, vol. 17(20), pages 1-16, October.
    12. Tong, Xi & Zhao, Shuyuan & Chen, Heng & Wang, Xinyu & Liu, Wenyi & Sun, Ying & Zhang, Lei, 2025. "Optimal dispatch of a multi-energy complementary system containing energy storage considering the trading of carbon emission and green certificate in China," Energy, Elsevier, vol. 314(C).
    13. Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
    14. Liu, Shuhan & Sun, Wenqiang, 2025. "Knowledge- and data-driven prediction of blast furnace gas generation and consumption in iron and steel sites," Applied Energy, Elsevier, vol. 390(C).
    15. Wang, Danhao & Peng, Daogang & Huang, Dongmei & Zhao, Huirong & Qu, Bogang, 2025. "MMEMformer: A multi-scale memory-enhanced transformer framework for short-term load forecasting in integrated energy systems," Energy, Elsevier, vol. 322(C).
    16. Wu, Qingxia & Peng, Long & Han, Guoqing & Shu, Jin & Yuan, Meng & Wang, Bohong, 2025. "Deep-learning-based scheduling optimization of wind-hydrogen-energy storage system on energy islands," Energy, Elsevier, vol. 320(C).
    17. Dong, Xianzhou & Guo, Weiyong & Zhou, Cheng & Luo, Yongqiang & Tian, Zhiyong & Zhang, Limao & Wu, Xiaoying & Liu, Baobing, 2024. "Hybrid model for robust and accurate forecasting building electricity demand combining physical and data-driven methods," Energy, Elsevier, vol. 311(C).
    18. Royal, Emily & Bandyopadhyay, Soutir & Newman, Alexandra & Huang, Qiuhua & Tabares-Velasco, Paulo Cesar, 2025. "A statistical framework for district energy long-term electric load forecasting," Applied Energy, Elsevier, vol. 384(C).
    19. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    20. Fatma Mazen Ali Mazen & Yomna Shaker & Rania Ahmed Abul Seoud, 2023. "Forecasting of Solar Power Using GRU–Temporal Fusion Transformer Model and DILATE Loss Function," Energies, MDPI, vol. 16(24), pages 1-24, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.