IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224039938.html
   My bibliography  Save this article

Optimal dispatch of a multi-energy complementary system containing energy storage considering the trading of carbon emission and green certificate in China

Author

Listed:
  • Tong, Xi
  • Zhao, Shuyuan
  • Chen, Heng
  • Wang, Xinyu
  • Liu, Wenyi
  • Sun, Ying
  • Zhang, Lei

Abstract

In the context of low-carbon power, the participation of large power system in the carbon market and green certificate market has become an important means to promote energy conservation and emission reduction. To further reduce the carbon emissions level of energy storage-multi energy complementary system (ES-MECS) and improve the operational economy of the system, an ES-MECS optimization scheduling strategy is proposed under the integrated carbon green certificate trading (ICGCT) mechanism. Firstly, physical modeling of ES-MECS, after analyzing the operating modes of the carbon emission trading (CET) market and the green certificate trading (GCT) market, ICGCT mechanism is established for the mutual conversion of carbon emission rights and green certificates. Secondly, an ES-MECS optimization scheduling model is established with the objective of minimizing the overall operating cost, which consists of ladder-type carbon trading cost, energy purchase cost, and green certificate trading benefit. Finally, data analysis is conducted using examples, and the impact of factors such as the basic transaction prices of green certificate trading and carbon trading on system operation is analyzed to verify the effectiveness of the proposed strategy. The final result shows 0.35 % reduction in overall operating cost and 5.03 % increase in total revenue, providing ideas for optimizing the operation mode and strategy of regional power grids.

Suggested Citation

  • Tong, Xi & Zhao, Shuyuan & Chen, Heng & Wang, Xinyu & Liu, Wenyi & Sun, Ying & Zhang, Lei, 2025. "Optimal dispatch of a multi-energy complementary system containing energy storage considering the trading of carbon emission and green certificate in China," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039938
    DOI: 10.1016/j.energy.2024.134215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    2. El-Emam, Rami S. & Constantin, Alina & Bhattacharyya, Rupsha & Ishaq, Haris & Ricotti, Marco E., 2024. "Nuclear and renewables in multipurpose integrated energy systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Lv, Haipeng & Fan, Tianyuan & Aikepaer, Sumaiya, 2023. "Stochastic optimal scheduling strategy of cross-regional carbon emissions trading and green certificate trading market based on Stackelberg game," Renewable Energy, Elsevier, vol. 219(P1).
    4. Kamani, D. & Ardehali, M.M., 2023. "Long-term forecast of electrical energy consumption with considerations for solar and wind energy sources," Energy, Elsevier, vol. 268(C).
    5. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    6. Yang, Meng & Liu, Yisheng, 2023. "Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response," Energy, Elsevier, vol. 283(C).
    7. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    8. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    9. Zhou, Dequn & Dong, Zhuojia & Sang, Xiuzhi & Wang, Qunwei & Yu, Xianyu, 2023. "Do feed-in tariff reduction and green certificate trading effectively promote regional sustainable development?," Energy, Elsevier, vol. 283(C).
    10. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Maimaiti, Pakezhati & Zhao, Yi, 2024. "Cross-regional green certificate transaction strategies based on a double-layer game model," Applied Energy, Elsevier, vol. 356(C).
    11. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Assessing the policy synergy among power, carbon emissions trading and tradable green certificate market mechanisms on strategic GENCOs in China," Energy, Elsevier, vol. 278(PB).
    12. Campos, José & Csontos, Csaba & Munkácsy, Béla, 2023. "Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition," Energy, Elsevier, vol. 278(PB).
    13. Chen, Chen & Liu, Ming & Li, Mengjie & Wang, Yu & Wang, Chaoyang & Yan, Junjie, 2024. "Digital twin modeling and operation optimization of the steam turbine system of thermal power plants," Energy, Elsevier, vol. 290(C).
    14. Wang, Zhongliang & Zhu, Hongyu & Zhang, Dongdong & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Modelling of wind and photovoltaic power output considering dynamic spatio-temporal correlation," Applied Energy, Elsevier, vol. 352(C).
    15. Zeng, Bo & He, Chengxiang & Mao, Cuiwei & Wu, You, 2023. "Forecasting China's hydropower generation capacity using a novel grey combination optimization model," Energy, Elsevier, vol. 262(PA).
    16. Chen, Yang & Mu, Huaizhong, 2023. "Natural resources, carbon trading policies and total factor carbon efficiency: A new direction for China’s economy," Resources Policy, Elsevier, vol. 86(PA).
    17. Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).
    18. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xu & Deng, Jianhua & Liu, Jichun, 2025. "Energy–carbon–green certificates management strategy for integrated energy system using carbon–green certificates double-direction interaction," Renewable Energy, Elsevier, vol. 238(C).
    2. Yang, Xiaohui & Wu, Chilv & Huang, Zezhong & Wang, Xiaopeng & Wang, Zhicong & Deng, Fuwei & Hu, Zecheng, 2025. "A two-stage dynamic planning for rural hybrid renewable energy systems under coupled carbon-green certificate trading," Energy, Elsevier, vol. 316(C).
    3. Zeng, Lijun & Du, Wenjing & Zhao, Laijun & Chen, Shuai, 2024. "An inter-provincial coordinate model under Renewable Portfolio Standards policy based on tradable green certificate options trading," Renewable Energy, Elsevier, vol. 234(C).
    4. Zhang, Yue & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "Optimal operation of multi-microgrid systems considering multi-level energy-certificate-carbon coupling trading," Renewable Energy, Elsevier, vol. 227(C).
    5. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    6. Zhang, Qian & Wang, Daxin & Zhao, Chanjuan & Wang, Xunting & Ding, Jinjin & Wang, Haiwei & Zhang, Xuemeng, 2024. "Low-carbon operation of smart distribution grid based on life cycle assessment and ladder-type carbon trading," Renewable Energy, Elsevier, vol. 231(C).
    7. Li, Ruhuan & Zhou, Jun & Qiu, Zitong & Li, Haonan & Li, Jinman & Wu, Ji & Wu, Kai, 2025. "Bi-level optimization of hybrid energy conversion system based on a multi-distinct low-carbon microgrid," Renewable Energy, Elsevier, vol. 239(C).
    8. Zhang, Jinliang & Liu, Ziyi & Liu, Yishuo, 2025. "A scheduling optimization model for a gas-electricity interconnected virtual power plant considering green certificates-carbon joint trading and source-load uncertainties," Energy, Elsevier, vol. 315(C).
    9. Zifan Tang & Yue Yin & Chao Chen & Changle Liu & Zhuoxun Li & Benyao Shi, 2025. "A Synergistic Planning Framework for Low-Carbon Power Systems: Integrating Coal-Fired Power Plant Retrofitting with a Carbon and Green Certificate Market Coupling Mechanism," Energies, MDPI, vol. 18(9), pages 1-24, May.
    10. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
    11. Chen, Yuzhu & Guo, Weimin & Lund, Peter D. & Du, Na & Yang, Kun & wang, Jun, 2024. "Configuration optimization of a wind-solar based net-zero emission tri-generation energy system considering renewable power and carbon trading mechanisms," Renewable Energy, Elsevier, vol. 232(C).
    12. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    13. Wang, Qinghan & Wang, Yanbo & Chen, Zhe & Soares, João, 2024. "Multi-agent system consistency-based cooperative scheduling strategy of regional integrated energy system," Energy, Elsevier, vol. 295(C).
    14. Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).
    15. Chengling Hu & Hao Bai & Wei Li & Kaigui Xie & Yipeng Liu & Tong Liu & Changzheng Shao, 2024. "Optimal Scheduling of Networked Microgrids Considering the Temporal Equilibrium Allocation of Annual Carbon Emission Allowance," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    16. Wang, L.L. & Xian, R.C. & Jiao, P.H. & Chen, J.J. & Chen, Y. & Liu, H.G., 2024. "Multi-timescale optimization of integrated energy system with diversified utilization of hydrogen energy under the coupling of green certificate and carbon trading," Renewable Energy, Elsevier, vol. 228(C).
    17. Jiaqi Wu & Qian Zhang & Yangdong Lu & Tianxi Qin & Jianyong Bai, 2023. "Source-Load Coordinated Low-Carbon Economic Dispatch of Microgrid including Electric Vehicles," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    18. Bian, Yifan & Xie, Lirong & Ma, Lan & Zhang, Hangong, 2024. "A novel two-stage energy sharing method for data center cluster considering ‘Carbon-Green Certificate’ coupling mechanism," Energy, Elsevier, vol. 313(C).
    19. Tiwari, Shubham & Singh, Jai Govind & Garg, Ankit, 2024. "A static robust energy management approach for modelling low emission multi-vectored energy hub including emission markets and power-to-gas units," Energy, Elsevier, vol. 294(C).
    20. Guo, Xiaopeng & Zhang, Xinyue & Zhang, Xingping, 2024. "Incentive-oriented power‑carbon emissions trading-tradable green certificate integrated market mechanisms using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.