IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2403-d1650961.html
   My bibliography  Save this article

A Synergistic Planning Framework for Low-Carbon Power Systems: Integrating Coal-Fired Power Plant Retrofitting with a Carbon and Green Certificate Market Coupling Mechanism

Author

Listed:
  • Zifan Tang

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Yue Yin

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Chao Chen

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Changle Liu

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Zhuoxun Li

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Benyao Shi

    (School of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

The intensifying impacts of climate change induced by carbon emissions necessitate the implementation of urgent mitigation strategies. Given that the power sector is a major contributor to global carbon emissions, strategic decarbonization planning in this sector is of paramount importance. This study proposes a synergistic planning framework for low-carbon power systems that integrates coal-fired power plants (CFPPs) and a carbon and green certificate market coupling mechanism, thereby facilitating a “security–economic–low-carbon” tri-objective transition in power systems. The proposed framework facilitates dynamic decision-making regarding the retrofitting of CFPPs, investments in renewable energy resources, and energy storage systems. By evaluating three distinct CFPP retrofitting pathways, the framework enhances economic efficiency and reduces carbon emissions, achieving reductions of 28.67% in total system costs and 2.96% in CO 2 emissions. Implementing the carbon–green certificate market coupling mechanism further unlocks the market value of green certificates, thereby providing economic incentives for clean energy projects and increasing flexibility in the allocation of carbon emission quotas for enterprises. Relative to cases that consider only carbon trading or only green certificate markets, the coupled mechanism reduces the total cost by 10.96% and 15.56%, and decreases carbon emissions by 27.10% and 47.36%, respectively. The collaborative planning framework introduced in this study enhances economic performance, increases renewable energy penetration, and reduces carbon emissions, thus facilitating the low-carbon transition of power systems.

Suggested Citation

  • Zifan Tang & Yue Yin & Chao Chen & Changle Liu & Zhuoxun Li & Benyao Shi, 2025. "A Synergistic Planning Framework for Low-Carbon Power Systems: Integrating Coal-Fired Power Plant Retrofitting with a Carbon and Green Certificate Market Coupling Mechanism," Energies, MDPI, vol. 18(9), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2403-:d:1650961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2403/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2403-:d:1650961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.