IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124004233.html
   My bibliography  Save this article

Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas

Author

Listed:
  • Liu, Fan
  • Duan, Jiandong
  • Wu, Chen
  • Tian, Qinxing

Abstract

The uncertainties of wind power and photovoltaic (Wind-PV) systems pose a threat to the steady functioning of integrated electricity-gas systems and restrict their effective consumption. In this case, an optimal operation model considering the cost risk of Wind-PV uncertainties is proposed. Firstly, the cost risk of uncertainties in typical scenarios is measured by conditional value at risk (CVaR). Secondly, considering that the power system and the natural gas system as different stakeholders have barriers in information exchange, a distributed optimization operation model is established, and the uncertainty of the conversion efficiency of the coupling unit from Power-to-Gas (P2G) is considered. Then, the integrated electricity-gas systems are decoupled through consistency constraints, and the model is solved by an algorithm framework based on adaptive penalty ADMM. This work analyzed the impact of uncertainty and CVaR parameters on optimized operation, and discussed the performance of related distributed algorithms. The following conclusions were drawn: 1) the proposed model reduces costs by 1.72% and can measure the operation risk caused by uncertainty factors, which provide guidance for decision makers; 2) the total cost will increase by 3.9% when the uncertainty factor reaches the preset maximum value, which demonstrates that the uncertainty of conversion efficiency should be controlled to reduce the operation cost of P2G; 3) As the convergence accuracy gradually improves, the proposed method is easier to converge and converges faster.

Suggested Citation

  • Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124004233
    DOI: 10.1016/j.renene.2024.120358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124004233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.