IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp523-537.html
   My bibliography  Save this article

Multi-level model predictive control based multi-objective optimal energy management of integrated energy systems considering uncertainty

Author

Listed:
  • Yao, Leyi
  • Liu, Zeyuan
  • Chang, Weiguang
  • Yang, Qiang

Abstract

Integrated energy systems (IES) with renewable energy systems (RES), carbon capture systems (CCS) and energy storage systems (ESS) are considered efficient in supporting the low-carbon energy supply with both economic and environmental benefits. Effective energy management is required to ensure the economical, environmental and reliable operation of the IES. However, the optimal IES operation is considered a non-trivial task due to the renewable generation uncertainty and the optimization of multiple contradictory objectives (e.g. economic, environmental and risk costs). This paper aims to provide a multi-level optimization model for the real-time optimal IES operation consisting of RES, ESS and CCS. This work quantifies the uncertainty by the Conditional Value at Risk (CVaR) theory in the optimization model. The uncertainty is further reduced by improving the operation strategy through a model predictive control (MPC)-based method. Also, the multi-objective optimization model is adopted to minimize the economic cost, carbon dioxide emissions (CDE) and primary energy consumption (PEC) for optimal energy scheduling in the intra-day stage. Based on the result of the intra-day stage, the feedback correction model is applied to adjust the schedule to balance the difference between the forecasting and actual values. Numerical results show that the proposed solution can provide the trade-off between economical and environmental performance. Through ablation experiments, the proposed method with feedback correction can carry out demand response with lower costs, CDE and PEC. The proposed solution is further confirmed with outperformed performance compared with single-objective optimization methods and other stochastic optimization methods. In addition, a robustness analysis is conducted to quantify the benefits of RES, ESS and CCS in IES.

Suggested Citation

  • Yao, Leyi & Liu, Zeyuan & Chang, Weiguang & Yang, Qiang, 2023. "Multi-level model predictive control based multi-objective optimal energy management of integrated energy systems considering uncertainty," Renewable Energy, Elsevier, vol. 212(C), pages 523-537.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:523-537
    DOI: 10.1016/j.renene.2023.05.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    2. Wang, Yongli & Wang, Yudong & Huang, Yujing & Li, Fang & Zeng, Ming & Li, Jiapu & Wang, Xiaohai & Zhang, Fuwei, 2019. "Planning and operation method of the regional integrated energy system considering economy and environment," Energy, Elsevier, vol. 171(C), pages 731-750.
    3. Ono, Hitoi & Ohtani, Yuichi & Matsuo, Minoru & Yamaguchi, Toru & Yokoyama, Ryohei, 2021. "Optimal operation of heat source and air conditioning system with thermal storage tank using nonlinear programming," Energy, Elsevier, vol. 222(C).
    4. Chang, Weiguang & Dong, Wei & Yang, Qiang, 2023. "Day-ahead bidding strategy of cloud energy storage serving multiple heterogeneous microgrids in the electricity market," Applied Energy, Elsevier, vol. 336(C).
    5. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    6. Zhao, Xin & Zheng, Wenyu & Hou, Zhihua & Chen, Heng & Xu, Gang & Liu, Wenyi & Chen, Honggang, 2022. "Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy," Energy, Elsevier, vol. 238(PA).
    7. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    8. Arteconi, Alessia & Del Zotto, Luca & Tascioni, Roberto & Cioccolanti, Luca, 2019. "Modelling system integration of a micro solar Organic Rankine Cycle plant into a residential building," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Rongquan Zhang & Saddam Aziz & Muhammad Umar Farooq & Kazi Nazmul Hasan & Nabil Mohammed & Sadiq Ahmad & Nisrine Ibadah, 2021. "A Wind Energy Supplier Bidding Strategy Using Combined EGA-Inspired HPSOIFA Optimizer and Deep Learning Predictor," Energies, MDPI, vol. 14(11), pages 1-22, May.
    10. Wei, Shangshang & Gao, Xianhua & Zhang, Yi & Li, Yiguo & Shen, Jiong & Li, Zuyi, 2021. "An improved stochastic model predictive control operation strategy of integrated energy system based on a single-layer multi-timescale framework," Energy, Elsevier, vol. 235(C).
    11. Bürger, Adrian & Bohlayer, Markus & Hoffmann, Sarah & Altmann-Dieses, Angelika & Braun, Marco & Diehl, Moritz, 2020. "A whole-year simulation study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use components," Applied Energy, Elsevier, vol. 258(C).
    12. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation," Applied Energy, Elsevier, vol. 304(C).
    13. Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    14. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    15. Rubén López-Rodríguez & Adriana Aguilera-González & Ionel Vechiu & Seddik Bacha, 2021. "Day-Ahead MPC Energy Management System for an Island Wind/Storage Hybrid Power Plant," Energies, MDPI, vol. 14(4), pages 1-33, February.
    16. Martínez-Lera, S. & Ballester, J. & Martínez-Lera, J., 2013. "Analysis and sizing of thermal energy storage in combined heating, cooling and power plants for buildings," Applied Energy, Elsevier, vol. 106(C), pages 127-142.
    17. Ahmad, Tanveer & Zhang, Dongdong, 2022. "A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting," Energy, Elsevier, vol. 239(PB).
    18. Zhang, Yan & Meng, Fanlin & Wang, Rui & Kazemtabrizi, Behzad & Shi, Jianmai, 2019. "Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid," Energy, Elsevier, vol. 179(C), pages 1265-1278.
    19. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    20. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    21. Jiyuan Kuang & Chenghui Zhang & Fan Li & Bo Sun, 2018. "Dynamic Optimization of Combined Cooling, Heating, and Power Systems with Energy Storage Units," Energies, MDPI, vol. 11(9), pages 1-16, August.
    22. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    23. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "A two-stage energy management for heat-electricity integrated energy system considering dynamic pricing of Stackelberg game and operation strategy optimization," Energy, Elsevier, vol. 244(PA).
    24. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    25. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    26. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.
    27. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunyang Hao & Yibo Wang & Chuang Liu & Guanglie Zhang & Hao Yu & Dongzhe Wang & Jingru Shang, 2023. "Research on Two-Stage Regulation Method for Source–Load Flexibility Transformation in Power Systems," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Shangshang & Gao, Xianhua & Zhang, Yi & Li, Yiguo & Shen, Jiong & Li, Zuyi, 2021. "An improved stochastic model predictive control operation strategy of integrated energy system based on a single-layer multi-timescale framework," Energy, Elsevier, vol. 235(C).
    2. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    3. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    4. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    5. Li, Fan & Sun, Bo & Zhang, Chenghui & Liu, Che, 2019. "A hybrid optimization-based scheduling strategy for combined cooling, heating, and power system with thermal energy storage," Energy, Elsevier, vol. 188(C).
    6. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    7. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    8. Zhao, Xin & Zheng, Wenyu & Hou, Zhihua & Chen, Heng & Xu, Gang & Liu, Wenyi & Chen, Honggang, 2022. "Economic dispatch of multi-energy system considering seasonal variation based on hybrid operation strategy," Energy, Elsevier, vol. 238(PA).
    9. Hong-Hai Niu & Yang Zhao & Shang-Shang Wei & Yi-Guo Li, 2021. "A Variable Performance Parameters Temperature–Flowrate Scheduling Model for Integrated Energy Systems," Energies, MDPI, vol. 14(17), pages 1-25, August.
    10. Liu, Chunming & Wang, Chunling & Yin, Yujun & Yang, Peihong & Jiang, Hui, 2022. "Bi-level dispatch and control strategy based on model predictive control for community integrated energy system considering dynamic response performance," Applied Energy, Elsevier, vol. 310(C).
    11. Xuan, Ang & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin, 2021. "A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables," Applied Energy, Elsevier, vol. 294(C).
    12. Zhuang, Wennan & Zhou, Suyang & Gu, Wei & Chen, Xiaogang, 2021. "Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing," Applied Energy, Elsevier, vol. 290(C).
    13. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    14. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).
    15. Xin Zhao & Yanqi Chen & Gang Xu & Heng Chen, 2022. "Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant," Energies, MDPI, vol. 16(1), pages 1-21, December.
    16. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    17. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    18. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    19. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    20. Xi, Yufei & Fang, Jiakun & Chen, Zhe & Zeng, Qing & Lund, Henrik, 2021. "Optimal coordination of flexible resources in the gas-heat-electricity integrated energy system," Energy, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:523-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.