IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9462158.html
   My bibliography  Save this article

A Survey on Optimal Control and Operation of Integrated Energy Systems

Author

Listed:
  • Chun Wei
  • Xiangzhi Xu
  • Youbing Zhang
  • Xiangshan Li

Abstract

At present, the transformation of energy structure is at a critical stage, and emerging renewable energy technologies and multienergy equipment have been widely used. How to improve the energy efficiency of integrated energy system (IES) and promote large-scale absorption of renewable energy is of great significance to the application forms of energy in the future. The development of new internet technology and sensor technology provides strong technical support for the optimal operation and coordinated control of IES. In recent years, the IES is experiencing unprecedented changes, which has attracted great attention from academia and industry. In this paper, the optimal control and operation behavior of IES are reviewed. Firstly, the research status of IES in recent years is summarized. Then, the modeling methods of different equipment in IES are analyzed in detail. The optimal operation of user, regional, and cross-regional IES are taken as typical research objects and the research status of optimization problems and operation modes, energy management planning, and power market allocation are summarized and analyzed. Finally, the key scientific issues and related frontier technologies in the IES are concluded, and the future research directions are prospected.

Suggested Citation

  • Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.
  • Handle: RePEc:hin:complx:9462158
    DOI: 10.1155/2019/9462158
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/9462158.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/9462158.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9462158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    2. Pawan Singh & Baseem Khan, 2017. "Smart Microgrid Energy Management Using a Novel Artificial Shark Optimization," Complexity, Hindawi, vol. 2017, pages 1-22, October.
    3. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    4. Zeng, Qing & Fang, Jiakun & Li, Jinghua & Chen, Zhe, 2016. "Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion," Applied Energy, Elsevier, vol. 184(C), pages 1483-1492.
    5. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2016. "Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow," Applied Energy, Elsevier, vol. 167(C), pages 230-243.
    6. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    7. Rui Dai & Jianxiong Zhang & Shichen Zhang, 2019. "Standard Setting with Considerations of Energy Efficiency Evolution and Market Competition," Complexity, Hindawi, vol. 2019, pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabar, Vahid Sohrabi & Banazadeh, Hamidreza & Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Nasir, Mohammad & Jurado, Francisco, 2022. "Stochastic multi-stage multi-objective expansion of renewable resources and electrical energy storage units in distribution systems considering crypto-currency miners and responsive loads," Renewable Energy, Elsevier, vol. 198(C), pages 1131-1147.
    2. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    3. Yao, Leyi & Liu, Zeyuan & Chang, Weiguang & Yang, Qiang, 2023. "Multi-level model predictive control based multi-objective optimal energy management of integrated energy systems considering uncertainty," Renewable Energy, Elsevier, vol. 212(C), pages 523-537.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    2. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    3. Lun Yang & Xia Zhao & Xinyi Li & Wei Yan, 2018. "Probabilistic Steady-State Operation and Interaction Analysis of Integrated Electricity, Gas and Heating Systems," Energies, MDPI, vol. 11(4), pages 1-21, April.
    4. He Huang & DaPeng Liang & Zhen Tong, 2018. "Integrated Energy Micro-Grid Planning Using Electricity, Heating and Cooling Demands," Energies, MDPI, vol. 11(10), pages 1-20, October.
    5. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).
    6. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
    7. Huang, Shaojun & Tang, Weichu & Wu, Qiuwei & Li, Canbing, 2019. "Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming," Energy, Elsevier, vol. 179(C), pages 464-474.
    8. Shouxiang Wang & Shuangchen Yuan, 2019. "Interval Energy Flow Analysis in Integrated Electrical and Natural-Gas Systems Considering Uncertainties," Energies, MDPI, vol. 12(11), pages 1-19, May.
    9. Liu, Peiyun & Ding, Tao & Zou, Zhixiang & Yang, Yongheng, 2019. "Integrated demand response for a load serving entity in multi-energy market considering network constraints," Applied Energy, Elsevier, vol. 250(C), pages 512-529.
    10. Shu, Kangan & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Chen, Zhe & He, Haibo & Wen, Jinyu, 2019. "Real-time subsidy based robust scheduling of the integrated power and gas system," Applied Energy, Elsevier, vol. 236(C), pages 1158-1167.
    11. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    12. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    16. Maciej Ławryńczuk, 2018. "Towards Reduced-Order Models of Solid Oxide Fuel Cell," Complexity, Hindawi, vol. 2018, pages 1-18, July.
    17. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    18. Danko Vidović & Elis Sutlović & Matislav Majstrović, 2021. "A Unique Electrical Model for the Steady-State Analysis of a Multi-Energy System," Energies, MDPI, vol. 14(18), pages 1-23, September.
    19. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    20. Song, William Hasung & Wang, Yang & Gillich, Aaron & Ford, Andy & Hewitt, Mark, 2019. "Modelling development and analysis on the Balanced Energy Networks (BEN) in London," Applied Energy, Elsevier, vol. 233, pages 114-125.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9462158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.