IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp512-529.html
   My bibliography  Save this article

Integrated demand response for a load serving entity in multi-energy market considering network constraints

Author

Listed:
  • Liu, Peiyun
  • Ding, Tao
  • Zou, Zhixiang
  • Yang, Yongheng

Abstract

The rapid development of an integrated energy system makes it difficult for traditional power market to adapt to the trend of multi-energy interactions. Therefore, a tri-layer multi-energy day-ahead market structure and operation mechanism, allowing the simultaneous trading of electricity, heat and natural gas, are proposed in this paper. Concentrating on the profit of the load serving entity in this market, the optimal transaction strategy based on the integrated demand response is explicitly modeled in detail. In particular, the physical constraints of the power distribution network, natural gas network and district heating network are strictly considered. To address the nonlinear and nonconvex problems in the distribution network and natural gas network, the mixed-integer second-order cone programming method and piecewise linearization process are used. Furthermore, a novel conditional value at risk approach is proposed to address the uncertain forecasted market prices, so that the risk can be mitigated. Compared with the traditional electricity market, the LSE can earn a higher profit in the proposed market, and the integrated demand response program enhances the potential of multi-energy peak load shifting. Finally, the effectiveness of the proposed method has been verified on an integrated energy system with IEEE 33-bus power system, an 11-node gas system and a 6-node heat system. A set of comparative cases verify the necessity for the IES to keep the balance between the market economy and network security operation.

Suggested Citation

  • Liu, Peiyun & Ding, Tao & Zou, Zhixiang & Yang, Yongheng, 2019. "Integrated demand response for a load serving entity in multi-energy market considering network constraints," Applied Energy, Elsevier, vol. 250(C), pages 512-529.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:512-529
    DOI: 10.1016/j.apenergy.2019.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    2. Abeysekera, M. & Wu, J. & Jenkins, N. & Rees, M., 2016. "Steady state analysis of gas networks with distributed injection of alternative gas," Applied Energy, Elsevier, vol. 164(C), pages 991-1002.
    3. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    4. James Nicolaisen & Valentin Petrov & Leigh Tesfatsion, 2000. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Computational Economics 0004005, University Library of Munich, Germany.
    5. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    6. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    7. Touretzky, Cara R. & McGuffin, Dana L. & Ziesmer, Jena C. & Baldea, Michael, 2016. "The effect of distributed electricity generation using natural gas on the electric and natural gas grids," Applied Energy, Elsevier, vol. 177(C), pages 500-514.
    8. Borenstein, Severin & Bushnell, James & Wolak, Frank, 2002. "Measuring Market Inefficiencies in California's Deregulated Electricity Industry," Staff General Research Papers Archive 13136, Iowa State University, Department of Economics.
    9. Zeng, Qing & Fang, Jiakun & Li, Jinghua & Chen, Zhe, 2016. "Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion," Applied Energy, Elsevier, vol. 184(C), pages 1483-1492.
    10. Hu, Yuan & Bie, Zhaohong & Ding, Tao & Lin, Yanling, 2016. "An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 167(C), pages 280-293.
    11. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2015. "Integration of nodal hourly pricing in day-ahead SDC (smart distribution company) optimization framework to effectively activate demand response," Energy, Elsevier, vol. 86(C), pages 649-660.
    12. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    13. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    14. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded," Applied Energy, Elsevier, vol. 154(C), pages 369-379.
    15. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    2. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    3. Li, Yuanzheng & Huang, Jingjing & Liu, Yun & Zhao, Tianyang & Zhou, Yue & Zhao, Yong & Yuen, Chau, 2022. "Day-ahead risk averse market clearing considering demand response with data-driven load uncertainty representation: A Singapore electricity market study," Energy, Elsevier, vol. 254(PA).
    4. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    5. Nasiri, Nima & Mansour Saatloo, Amin & Mirzaei, Mohammad Amin & Ravadanegh, Sajad Najafi & Zare, Kazem & Mohammadi-ivatloo, Behnam & Marzband, Mousa, 2023. "A robust bi-level optimization framework for participation of multi-energy service providers in integrated power and natural gas markets," Applied Energy, Elsevier, vol. 340(C).
    6. Yiqi Li & Jing Zhang & Zhoujun Ma & Yang Peng & Shuwen Zhao, 2021. "An Energy Management Optimization Method for Community Integrated Energy System Based on User Dominated Demand Side Response," Energies, MDPI, vol. 14(15), pages 1-22, July.
    7. Li, Yuchun & Wang, Jinkuan & Zhang, Yan & Han, Yinghua, 2022. "Day-ahead scheduling strategy for integrated heating and power system with high wind power penetration and integrated demand response: A hybrid stochastic/interval approach," Energy, Elsevier, vol. 253(C).
    8. Chen, Sheng & Sun, Guoqiang & Wei, Zhinong & Wang, Dan, 2020. "Dynamic pricing in electricity and natural gas distribution networks: An EPEC model," Energy, Elsevier, vol. 207(C).
    9. Qiuyi Hong & Fanlin Meng & Jian Liu, 2023. "Customised Multi-Energy Pricing: Model and Solutions," Energies, MDPI, vol. 16(4), pages 1-31, February.
    10. Saravi, Vahid Sabzpoosh & Kalantar, Mohsen & Anvari-Moghaddam, Amjad, 2022. "Resilience-constrained expansion planning of integrated power–gas–heat distribution networks," Applied Energy, Elsevier, vol. 323(C).
    11. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    12. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    13. Liu, Wenxia & Huang, Yuchen & Li, Zhengzhou & Yang, Yue & Yi, Fang, 2020. "Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response," Energy, Elsevier, vol. 198(C).
    14. Georgios I. Tsoumalis & Zafeirios N. Bampos & Georgios V. Chatzis & Pandelis N. Biskas, 2022. "Overview of Natural Gas Boiler Optimization Technologies and Potential Applications on Gas Load Balancing Services," Energies, MDPI, vol. 15(22), pages 1-24, November.
    15. van Beuzekom, Iris & Hodge, Bri-Mathias & Slootweg, Han, 2021. "Framework for optimization of long-term, multi-period investment planning of integrated urban energy systems," Applied Energy, Elsevier, vol. 292(C).
    16. Jafari, Amirreza & Ganjeh Ganjehlou, Hamed & Khalili, Tohid & Bidram, Ali, 2020. "A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids," Applied Energy, Elsevier, vol. 270(C).
    17. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    18. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    19. Abdollahi, Elnaz & Lahdelma, Risto, 2020. "Decomposition method for optimizing long-term multi-area energy production with heat and power storages," Applied Energy, Elsevier, vol. 260(C).
    20. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    21. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    2. Jiang, Tuo & Min, Yong & Zhou, Guiping & Chen, Lei & Chen, Qun & Xu, Fei & Luo, Huanhuan, 2021. "Hierarchical dispatch method for integrated heat and power systems considering the heat transfer process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    4. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    5. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    6. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    7. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Li, Zhengshuo & Pan, Zhaoguang & Wu, Wenchuan, 2019. "A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias," Energy, Elsevier, vol. 181(C), pages 840-852.
    8. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    9. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    10. Ding, Jianyong & Gao, Ciwei & Song, Meng & Yan, Xingyu & Chen, Tao, 2022. "Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism," Applied Energy, Elsevier, vol. 327(C).
    11. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    12. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    13. Shen, Lu & Dou, Xiaobo & Long, Huan & Li, Chen & Chen, Kang & Zhou, Ji, 2021. "A collaborative voltage optimization utilizing flexibility of community heating systems for high PV penetration," Energy, Elsevier, vol. 232(C).
    14. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
    15. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    16. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    17. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
    18. Shu, Kangan & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Chen, Zhe & He, Haibo & Wen, Jinyu, 2019. "Real-time subsidy based robust scheduling of the integrated power and gas system," Applied Energy, Elsevier, vol. 236(C), pages 1158-1167.
    19. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    20. Qu, Kaiping & Yu, Tao & Zhang, Xiaoshun & Li, Haofei, 2019. "Homogenized adjacent points method: A novel Pareto optimizer for linearized multi-objective optimal energy flow of integrated electricity and gas system," Applied Energy, Elsevier, vol. 233, pages 338-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:512-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.