IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1073-1087.html
   My bibliography  Save this article

Distributed energy management for active distribution network considering aggregated office buildings

Author

Listed:
  • Li, Zening
  • Su, Su
  • Jin, Xiaolong
  • Chen, Houhe

Abstract

This paper proposes a distributed energy management for active distribution network (ADN) considering aggregated office buildings. It aims to dispatch the flexible resources of office buildings to actively participate in the optimization of the ADN. Firstly, by considering the comfortable indoor temperature range and travel habits of workers, an optimal operation model for the office building with integrated heating ventilation and air conditioning (HVAC) systems and electric vehicle (EV) charging piles is constructed. Secondly, based on the piecewise linearization and second-order cone relaxation (SOCR), an ADN optimization model with aggregated office buildings is formulated and converted into a mixed-integer second-order cone programming (MISOCP) model. Then, considering the private information protection, the alternating direction method of multipliers (ADMM) is used to solve the ADN optimization model to realize the distributed energy management of the ADN with aggregated office buildings. Finally, the scheduling results of the ADN optimization model under different comfortable indoor temperatures and control methods of EVs are analyzed in the winter heating scenario. Numerical results show that the proposed method can increase the penetration of distributed photovoltaic (PV) generation and decrease losses of the distribution network while ensuring the temperature and travel demands of workers in office buildings. The information privacy of each district can also be protected with the proposed method.

Suggested Citation

  • Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1073-1087
    DOI: 10.1016/j.renene.2021.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101332X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokryani, Geev & Hu, Yim Fun & Pillai, Prashant & Rajamani, Haile-Selassie, 2017. "Active distribution networks planning with high penetration of wind power," Renewable Energy, Elsevier, vol. 104(C), pages 40-49.
    2. Kim, Youngjin & Norford, Leslie K., 2017. "Optimal use of thermal energy storage resources in commercial buildings through price-based demand response considering distribution network operation," Applied Energy, Elsevier, vol. 193(C), pages 308-324.
    3. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    4. Liang, Zheming & Bian, Desong & Zhang, Xiaohu & Shi, Di & Diao, Ruisheng & Wang, Zhiwei, 2019. "Optimal energy management for commercial buildings considering comprehensive comfort levels in a retail electricity market," Applied Energy, Elsevier, vol. 236(C), pages 916-926.
    5. Homod, Raad Z., 2018. "Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings," Renewable Energy, Elsevier, vol. 126(C), pages 49-64.
    6. Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Mokryani, Geev & Hu, Yim Fun & Papadopoulos, Panagiotis & Niknam, Taher & Aghaei, Jamshid, 2017. "Deterministic approach for active distribution networks planning with high penetration of wind and solar power," Renewable Energy, Elsevier, vol. 113(C), pages 942-951.
    8. Hu, Maomao & Xiao, Fu, 2018. "Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm," Applied Energy, Elsevier, vol. 219(C), pages 151-164.
    9. Qiao, Baihao & Liu, Jing, 2020. "Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm," Renewable Energy, Elsevier, vol. 154(C), pages 316-336.
    10. Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
    11. Jiang, Tao & Li, Zening & Jin, Xiaolong & Chen, Houhe & Li, Xue & Mu, Yunfei, 2018. "Flexible operation of active distribution network using integrated smart buildings with heating, ventilation and air-conditioning systems," Applied Energy, Elsevier, vol. 226(C), pages 181-196.
    12. Kermani, Mostafa & Adelmanesh, Behin & Shirdare, Erfan & Sima, Catalina Alexandra & Carnì, Domenico Luca & Martirano, Luigi, 2021. "Intelligent energy management based on SCADA system in a real Microgrid for smart building applications," Renewable Energy, Elsevier, vol. 171(C), pages 1115-1127.
    13. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    14. Gong, Lili & Cao, Wu & Liu, Kangli & Yu, Yue & Zhao, Jianfeng, 2020. "Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources," Renewable Energy, Elsevier, vol. 156(C), pages 665-676.
    15. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    16. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    17. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costa, Vinicius Braga Ferreira da & Bonatto, Benedito Donizeti, 2023. "Cutting-edge public policy proposal to maximize the long-term benefits of distributed energy resources," Renewable Energy, Elsevier, vol. 203(C), pages 357-372.
    2. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    3. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Huang, Zhanghao & Zhang, Yachao & Xie, Shiwei, 2022. "Data-adaptive robust coordinated optimization of dynamic active and reactive power flow in active distribution networks," Renewable Energy, Elsevier, vol. 188(C), pages 164-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    2. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    3. Verhaeghe, C. & Verbeke, S. & Audenaert, A., 2021. "A consistent taxonomic framework: towards common understanding of high energy performance building definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    5. Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
    6. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    7. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    8. Prajapati, Vijaykumar K. & Mahajan, Vasundhara, 2021. "Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources," Energy, Elsevier, vol. 215(PB).
    9. Xie, Shiwei & Hu, Zhijian & Zhou, Daming & Li, Yan & Kong, Shunfei & Lin, Weiwei & Zheng, Yunfei, 2018. "Multi-objective active distribution networks expansion planning by scenario-based stochastic programming considering uncertain and random weight of network," Applied Energy, Elsevier, vol. 219(C), pages 207-225.
    10. Zheng, Zhuang & Sun, Zhankun & Pan, Jia & Luo, Xiaowei, 2021. "An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems," Applied Energy, Elsevier, vol. 298(C).
    11. Samal, Rajat Kanti & Tripathy, M., 2019. "A novel distance metric for evaluating impact of wind integration on power systems," Renewable Energy, Elsevier, vol. 140(C), pages 722-736.
    12. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    13. Guo, Jiwei & Dong, Jiankai & Wang, Hongjue & Wang, Yuan & Zou, Bin & Jiang, Yiqiang, 2022. "Study on the demand response potential of an actively ventilated building: Parametric and scenario analysis," Energy, Elsevier, vol. 238(PC).
    14. Antonio Rubens Baran Junior & Thelma S. Piazza Fernandes & Ricardo Augusto Borba, 2019. "Voltage Regulation Planning for Distribution Networks Using Multi-Scenario Three-Phase Optimal Power Flow," Energies, MDPI, vol. 13(1), pages 1-21, December.
    15. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    16. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    17. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Gyanendra Singh Sisodia & Einas Awad & Heba Alkhoja & Bruno S. Sergi, 2020. "Strategic business risk evaluation for sustainable energy investment and stakeholder engagement: A proposal for energy policy development in the Middle East through Khalifa funding and land subsidies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2789-2802, September.
    19. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
    20. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1073-1087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.