IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p159-d302966.html
   My bibliography  Save this article

Voltage Regulation Planning for Distribution Networks Using Multi-Scenario Three-Phase Optimal Power Flow

Author

Listed:
  • Antonio Rubens Baran Junior

    (Electrical Engineering Department, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil)

  • Thelma S. Piazza Fernandes

    (Electrical Engineering Department, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil)

  • Ricardo Augusto Borba

    (Electrical Engineering Department, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil)

Abstract

Active distribution networks must operate properly for different scenarios of load levels and distributed generation. An important operational requirement is to maintain the voltage profile within standard operating limits. To do this, this paper proposed a Multi-Scenario Three-Phase Optimal Power Flow (MTOPF) that plans the voltage regulation of unbalance and active distribution networks considering typical scenarios of operation. This MTOPF finds viable operation points by the optimal adjustments of voltage regulator taps and distribution transformer taps. The differentiating characteristic of this formulation is that in addition to the traditional tuning of voltage regulator taps of an active network applied for just one scenario of load and generation, it also performs the optimal adjustment of distribution transformer taps, which, once fixed, is able to meet the voltage limits of diverse operating situations. The optimization problem was solved by the primal-dual interior-point method and the formulation was tested using the IEEE 123-bus system.

Suggested Citation

  • Antonio Rubens Baran Junior & Thelma S. Piazza Fernandes & Ricardo Augusto Borba, 2019. "Voltage Regulation Planning for Distribution Networks Using Multi-Scenario Three-Phase Optimal Power Flow," Energies, MDPI, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:159-:d:302966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mokryani, Geev & Hu, Yim Fun & Pillai, Prashant & Rajamani, Haile-Selassie, 2017. "Active distribution networks planning with high penetration of wind power," Renewable Energy, Elsevier, vol. 104(C), pages 40-49.
    2. Mokryani, Geev & Hu, Yim Fun & Papadopoulos, Panagiotis & Niknam, Taher & Aghaei, Jamshid, 2017. "Deterministic approach for active distribution networks planning with high penetration of wind and solar power," Renewable Energy, Elsevier, vol. 113(C), pages 942-951.
    3. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    4. Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Guo, Lingxu & Li, Peng & Yu, Li & Meng, He, 2018. "Optimal voltage regulation for distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 210(C), pages 1027-1036.
    5. Xu, Jian & Wang, Jing & Liao, Siyang & Sun, Yuanzhang & Ke, Deping & Li, Xiong & Liu, Ji & Jiang, Yibo & Wei, Congying & Tang, Bowen, 2018. "Stochastic multi-objective optimization of photovoltaics integrated three-phase distribution network based on dynamic scenarios," Applied Energy, Elsevier, vol. 231(C), pages 985-996.
    6. Rohouma, Wesam & Balog, Robert S. & Peerzada, Aaqib Ahmad & Begovic, Miroslav M., 2020. "D-STATCOM for harmonic mitigation in low voltage distribution network with high penetration of nonlinear loads," Renewable Energy, Elsevier, vol. 145(C), pages 1449-1464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    2. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    3. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    4. Gyanendra Singh Sisodia & Einas Awad & Heba Alkhoja & Bruno S. Sergi, 2020. "Strategic business risk evaluation for sustainable energy investment and stakeholder engagement: A proposal for energy policy development in the Middle East through Khalifa funding and land subsidies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2789-2802, September.
    5. Zubo, Rana H.A. & Mokryani, Geev & Abd-Alhameed, Raed, 2018. "Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment," Applied Energy, Elsevier, vol. 220(C), pages 713-722.
    6. Zhou, Siyu & Han, Yang & Yang, Ping & Mahmoud, Karar & Lehtonen, Matti & Darwish, Mohamed M.F. & Zalhaf, Amr S., 2022. "An optimal network constraint-based joint expansion planning model for modern distribution networks with multi-types intermittent RERs," Renewable Energy, Elsevier, vol. 194(C), pages 137-151.
    7. Prajapati, Vijaykumar K. & Mahajan, Vasundhara, 2021. "Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources," Energy, Elsevier, vol. 215(PB).
    8. Xie, Shiwei & Hu, Zhijian & Zhou, Daming & Li, Yan & Kong, Shunfei & Lin, Weiwei & Zheng, Yunfei, 2018. "Multi-objective active distribution networks expansion planning by scenario-based stochastic programming considering uncertain and random weight of network," Applied Energy, Elsevier, vol. 219(C), pages 207-225.
    9. Ali, Md Sawkat & Haque, Md Mejbaul & Wolfs, Peter, 2019. "A review of topological ordering based voltage rise mitigation methods for LV distribution networks with high levels of photovoltaic penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 463-476.
    10. Ye, Chengjin & Ding, Yi & Song, Yonghua & Lin, Zhenzhi & Wang, Lei, 2018. "A data driven multi-state model for distribution system flexible planning utilizing hierarchical parallel computing," Applied Energy, Elsevier, vol. 232(C), pages 9-25.
    11. Samal, Rajat Kanti & Tripathy, M., 2019. "A novel distance metric for evaluating impact of wind integration on power systems," Renewable Energy, Elsevier, vol. 140(C), pages 722-736.
    12. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    13. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    14. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    15. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    16. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    17. Yu-Cheol Jeong & Eul-Bum Lee & Douglas Alleman, 2019. "Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    18. Gupta, Akhil, 2022. "Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC," Energy, Elsevier, vol. 238(PB).
    19. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    20. Henning Schlachter & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2021. "Voltage-Based Load Recognition in Low Voltage Distribution Grids with Deep Learning," Energies, MDPI, vol. 15(1), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:159-:d:302966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.