IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp207-225.html
   My bibliography  Save this article

Multi-objective active distribution networks expansion planning by scenario-based stochastic programming considering uncertain and random weight of network

Author

Listed:
  • Xie, Shiwei
  • Hu, Zhijian
  • Zhou, Daming
  • Li, Yan
  • Kong, Shunfei
  • Lin, Weiwei
  • Zheng, Yunfei

Abstract

This paper presents a novel multi-objective model of active distribution network planning based on stochastic programming and uncertain random network (URN) theory. The planning model is proposed to find the final scheme with optimal alternative, location, size and operational strategy for the candidate distribution lines, transformer substations (TSs), distribution generations (DGs), static var compensators (SVCs) and on-load tap changers (OLTCs). Firstly, a scenario-based approach is developed to analyse the uncertainties in network system, such as the demand and intermittency of renewable sources. Since the impact of multiple uncertain factors on network cannot be ignored, a network frame is then modelled by uncertain and random weights of spanning tree (ST) instead of fixed value. In order to achieve the minimization of total cost, and further the selection of a minimum spanning tree (MST) with the uncertain and random weight, a 3-dimensional uncertain space is constructed based on the combination of the previous two targets. In addition, a second-order cone programming (SOCP) is applied to cope with the multi-objective, mixed-integer nonlinear nature of the proposed planning model. Simulation is performed on a modified Pacific Gas and Electric Company (PG&E) 69-bus distribution system, and the results demonstrate the effectiveness of the proposed model.

Suggested Citation

  • Xie, Shiwei & Hu, Zhijian & Zhou, Daming & Li, Yan & Kong, Shunfei & Lin, Weiwei & Zheng, Yunfei, 2018. "Multi-objective active distribution networks expansion planning by scenario-based stochastic programming considering uncertain and random weight of network," Applied Energy, Elsevier, vol. 219(C), pages 207-225.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:207-225
    DOI: 10.1016/j.apenergy.2018.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokryani, Geev & Hu, Yim Fun & Papadopoulos, Panagiotis & Niknam, Taher & Aghaei, Jamshid, 2017. "Deterministic approach for active distribution networks planning with high penetration of wind and solar power," Renewable Energy, Elsevier, vol. 113(C), pages 942-951.
    2. Mokryani, Geev & Hu, Yim Fun & Pillai, Prashant & Rajamani, Haile-Selassie, 2017. "Active distribution networks planning with high penetration of wind power," Renewable Energy, Elsevier, vol. 104(C), pages 40-49.
    3. Zeng, Bo & Wen, Junqiang & Shi, Jinyue & Zhang, Jianhua & Zhang, Yuying, 2016. "A multi-level approach to active distribution system planning for efficient renewable energy harvesting in a deregulated environment," Energy, Elsevier, vol. 96(C), pages 614-624.
    4. Jadidoleslam, Morteza & Ebrahimi, Akbar & Latify, Mohammad Amin, 2017. "Probabilistic transmission expansion planning to maximize the integration of wind power," Renewable Energy, Elsevier, vol. 114(PB), pages 866-878.
    5. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Beneficiaries of transmission expansion projects of an expansion plan: An Aumann-Shapley approach," Applied Energy, Elsevier, vol. 195(C), pages 382-401.
    6. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Estimating the benefits of transmission expansion projects: An Aumann-Shapley approach," Energy, Elsevier, vol. 118(C), pages 1044-1054.
    7. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    8. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    9. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    10. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    11. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    12. Baringo, L. & Conejo, A.J., 2011. "Wind power investment within a market environment," Applied Energy, Elsevier, vol. 88(9), pages 3239-3247.
    13. Gitizadeh, Mohsen & Vahed, Ali Azizi & Aghaei, Jamshid, 2013. "Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms," Applied Energy, Elsevier, vol. 101(C), pages 655-666.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    2. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    3. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    4. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    5. Held, Anne & Ragwitz, Mario & Sensfuß, Frank & Resch, Gustav & Olmos, Luis & Ramos, Andrés & Rivier, Michel, 2018. "How can the renewables targets be reached cost-effectively? Policy options for the development of renewables and the transmission grid," Energy Policy, Elsevier, vol. 116(C), pages 112-126.
    6. Sara Lumbreras & Jesús David Gómez & Erik Francisco Alvarez & Sebastien Huclin, 2022. "The Human Factor in Transmission Network Expansion Planning: The Grid That a Sustainable Energy System Needs," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    7. Antonio Rubens Baran Junior & Thelma S. Piazza Fernandes & Ricardo Augusto Borba, 2019. "Voltage Regulation Planning for Distribution Networks Using Multi-Scenario Three-Phase Optimal Power Flow," Energies, MDPI, vol. 13(1), pages 1-21, December.
    8. Yao, Haotian & Xiang, Yue & Liu, Junyong, 2022. "Exploring multiple investment strategies for non-utility-owned DGs: A decentralized risked-based approach," Applied Energy, Elsevier, vol. 326(C).
    9. Mandhir Kumar Verma & Vivekananda Mukherjee & Vinod Kumar Yadav & Santosh Ghosh, 2020. "Constraints for effective distribution network expansion planning: an ample review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 531-546, June.
    10. Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
    11. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    12. Jingjing Tu & Yonghai Xu & Zhongdong Yin, 2018. "Data-Driven Kernel Extreme Learning Machine Method for the Location and Capacity Planning of Distributed Generation," Energies, MDPI, vol. 12(1), pages 1-21, December.
    13. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Gyanendra Singh Sisodia & Einas Awad & Heba Alkhoja & Bruno S. Sergi, 2020. "Strategic business risk evaluation for sustainable energy investment and stakeholder engagement: A proposal for energy policy development in the Middle East through Khalifa funding and land subsidies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2789-2802, September.
    15. Kristiansen, Martin & Korpås, Magnus & Svendsen, Harald G., 2018. "A generic framework for power system flexibility analysis using cooperative game theory," Applied Energy, Elsevier, vol. 212(C), pages 223-232.
    16. Voswinkel, Simon & Höckner, Jonas & Khalid, Abuzar & Weber, Christoph, 2022. "Sharing congestion management costs among system operators using the Shapley value," Applied Energy, Elsevier, vol. 317(C).
    17. Mei, Jie & Chen, Chen & Wang, Jianhui & Kirtley, James L., 2019. "Coalitional game theory based local power exchange algorithm for networked microgrids," Applied Energy, Elsevier, vol. 239(C), pages 133-141.
    18. Moradijoz, M. & Moghaddam, M. Parsa & Haghifam, M.R., 2018. "A flexible active distribution system expansion planning model: A risk-based approach," Energy, Elsevier, vol. 145(C), pages 442-457.
    19. Zubo, Rana H.A. & Mokryani, Geev & Abd-Alhameed, Raed, 2018. "Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environment," Applied Energy, Elsevier, vol. 220(C), pages 713-722.
    20. Zhou, Siyu & Han, Yang & Yang, Ping & Mahmoud, Karar & Lehtonen, Matti & Darwish, Mohamed M.F. & Zalhaf, Amr S., 2022. "An optimal network constraint-based joint expansion planning model for modern distribution networks with multi-types intermittent RERs," Renewable Energy, Elsevier, vol. 194(C), pages 137-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:207-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.