IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4229-d1152082.html
   My bibliography  Save this article

Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons

Author

Listed:
  • Junchao Cheng

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Naha 903-0213, Japan)

  • Yongyi Huang

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Naha 903-0213, Japan)

  • Hongjing He

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Naha 903-0213, Japan)

  • Abdul Matin Ibrahimi

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Naha 903-0213, Japan)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Naha 903-0213, Japan)

Abstract

Energy shortage has always been a problem that the world needs to face. The combined cooling, heating, and power (CCHP) system, as a multi-level energy utilization system that can provide cooling, heating, and electric energy simultaneously, is considered to have good development prospects in alleviating energy problems. In addition, because of the rapid development of electric vehicles (EVs), using EVs as power supply devices has become a hot topic of research. In this paper, EVs are combined with the CCHP system as new power supply equipment, and the influence of the season on the user’s cooling, heating, and power demand is considered. Aiming at the minimum economic cost, the system is optimized by using the PSO algorithm in two operating modes: following electricity load (FEL) and following thermal load (FTL). The final results show that the participation of EVs can reduce costs in both operating modes, especially in FTL mode, which can reduce costs by 4.58%, 13.61%, 12.74%, and 3.57% in spring, summer, autumn, and winter, respectively. In addition, the FEL mode is more economical in spring and winter, and the FTL mode is more economical in summer and winter. In addition, the C O 2 emissions in FEL mode are always less than in FTL mode.

Suggested Citation

  • Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4229-:d:1152082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Melo, F.M. & Magnani, F.S. & Carvalho, M., 2022. "A decision-making method to choose optimal systems considering financial and environmental aspects: Application in hybrid CCHP systems," Energy, Elsevier, vol. 250(C).
    2. Gong, Lili & Cao, Wu & Liu, Kangli & Yu, Yue & Zhao, Jianfeng, 2020. "Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources," Renewable Energy, Elsevier, vol. 156(C), pages 665-676.
    3. Seyfettin Vadi & Ramazan Bayindir & Alperen Mustafa Colak & Eklas Hossain, 2019. "A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies," Energies, MDPI, vol. 12(19), pages 1-27, September.
    4. Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, Pierluigi, 2017. "Evaluating the benefits of coordinated emerging flexible resources in electricity markets," Applied Energy, Elsevier, vol. 199(C), pages 142-154.
    5. Li, Nan & Zhao, Xunwen & Shi, Xunpeng & Pei, Zhenwei & Mu, Hailin & Taghizadeh-Hesary, Farhad, 2021. "Integrated energy systems with CCHP and hydrogen supply: A new outlet for curtailed wind power," Applied Energy, Elsevier, vol. 303(C).
    6. Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    7. Dai, Yiru & Zeng, Yipu, 2022. "Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes," Energy, Elsevier, vol. 260(C).
    8. Yunshou Mao & Jiekang Wu & Wenjie Zhang, 2020. "An Effective Operation Strategy for CCHP System Integrated with Photovoltaic/Thermal Panels and Thermal Energy Storage," Energies, MDPI, vol. 13(23), pages 1-20, December.
    9. Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
    10. Heydarian-Forushani, E. & Golshan, M.E.H. & Shafie-khah, M., 2016. "Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration," Applied Energy, Elsevier, vol. 179(C), pages 338-349.
    11. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    12. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    13. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    14. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    15. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Li, Yaohong & Tian, Ran & Wei, Mingshan, 2022. "Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies," Applied Energy, Elsevier, vol. 310(C).
    17. Comodi, Gabriele & Bartolini, Andrea & Carducci, Francesco & Nagaranjan, Balamurugan & Romagnoli, Alessandro, 2019. "Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems," Applied Energy, Elsevier, vol. 256(C).
    18. Yang, G. & Zhai, X.Q., 2019. "Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition," Energy, Elsevier, vol. 174(C), pages 647-663.
    19. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Zhao, Junjie & Luo, Xiaobing & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel CCHP system based on a closed PEMEC-PEMFC loop with water self-supply," Applied Energy, Elsevier, vol. 338(C).
    3. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    4. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    6. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    7. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    8. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    9. Yunshou Mao & Jiekang Wu & Wenjie Zhang, 2020. "An Effective Operation Strategy for CCHP System Integrated with Photovoltaic/Thermal Panels and Thermal Energy Storage," Energies, MDPI, vol. 13(23), pages 1-20, December.
    10. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    11. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    12. Liting Zhang & Weijun Gao & Yongwen Yang & Fanyue Qian, 2020. "Impacts of Investment Cost, Energy Prices and Carbon Tax on Promoting the Combined Cooling, Heating and Power (CCHP) System of an Amusement Park Resort in Shanghai," Energies, MDPI, vol. 13(16), pages 1-22, August.
    13. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    14. Li, Yipu & Su, Hao & Zhou, Yun & Chen, Lixia & Shi, Yiwei & Li, Hengjie & Feng, Donghan, 2023. "Two-stage real-time optimal electricity dispatch strategy for urban residential quarter with electric vehicles’ charging load," Energy, Elsevier, vol. 268(C).
    15. Zhou, Yuan & Wang, Jiangjiang & Liu, Yi & Yan, Rujing & Ma, Yanpeng, 2021. "Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system," Energy, Elsevier, vol. 233(C).
    16. Liu, Zuming & Zhao, Yingru & Wang, Xiaonan, 2020. "Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response," Applied Energy, Elsevier, vol. 279(C).
    17. Chen, Ke & Pan, Ming, 2021. "Operation optimization of combined cooling, heating, and power superstructure system for satisfying demand fluctuation," Energy, Elsevier, vol. 237(C).
    18. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    19. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    20. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).

    More about this item

    Keywords

    CCHP; EV; PSO; optimization;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4229-:d:1152082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.