IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223005959.html
   My bibliography  Save this article

Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems

Author

Listed:
  • Jin, Baohong

Abstract

The performance of regional distributed energy systems is closely related to operation strategies and is also affected by the renewable energy penetration rate of the power system. According to the load characteristics of a public building in Changsha, a regional distributed energy system of a combined heating and power unit coupled with a photovoltaic, ground source heat pump, air-source heat pump, and energy storage is proposed to explore the impact of the power system's renewable energy penetration rate on its optimization and operation. Based on the following electric load, following thermal load, and following hybrid electric-heating load strategies, this paper conducts a multi-objective optimization design for the proposed system according to two scenarios, where Scenario 1 considers the change of renewable energy penetration in the power system, and Scenario 2 does not. According to the optimization results, the impact of the change in the power system's renewable energy penetration rate on the system performance is comparatively analyzed. The results show that the electricity consumption share of the system from Scenario 1 is greater than that of the system from Scenario 2, regardless of the design and operation conditions. With the increase of renewable energy penetration, the primary energy saving rate of the system from Scenario 1 is higher than that of the system from Scenario 2, with increasing rates of 37.60%, 7.92%, and 36.87% under three strategies, respectively. Furthermore, for Scenario 1, the system operation performance under the following thermal load strategy is better than that under the other two strategies. The results of this paper provide some guidance for the optimal design of grid-connected distributed energy systems.

Suggested Citation

  • Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005959
    DOI: 10.1016/j.energy.2023.127201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Yi & Han, Jitian & Ma, Qingzhao & Feng, Jiahui, 2022. "Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage," Energy, Elsevier, vol. 246(C).
    2. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
    3. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    4. Song, Zhihui & Liu, Tao & Lin, Qizhao, 2020. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes," Energy, Elsevier, vol. 206(C).
    5. Yang, G. & Zhai, X.Q., 2019. "Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition," Energy, Elsevier, vol. 174(C), pages 647-663.
    6. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    7. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    8. Qiu, Shuo & Lei, Tian & Wu, Jiangtao & Bi, Shengshan, 2021. "Energy demand and supply planning of China through 2060," Energy, Elsevier, vol. 234(C).
    9. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    10. Deng, Yan & Liu, Yicai & Zeng, Rong & Wang, Qianxu & Li, Zheng & Zhang, Yu & Liang, Heng, 2021. "A novel operation strategy based on black hole algorithm to optimize combined cooling, heating, and power-ground source heat pump system," Energy, Elsevier, vol. 229(C).
    11. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    12. Hou, Hongjuan & Wu, Jiwen & Ding, Zeyu & Yang, Bo & Hu, Eric, 2021. "Performance analysis of a solar-assisted combined cooling, heating and power system with an improved operation strategy," Energy, Elsevier, vol. 227(C).
    13. Ren, Hongbo & Zhou, Weisheng & Gao, Weijun, 2012. "Optimal option of distributed energy systems for building complexes in different climate zones in China," Applied Energy, Elsevier, vol. 91(1), pages 156-165.
    14. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Arturo Cárdenas Guerra & Adalberto José Ospino Castro & Rafael Peña Gallardo, 2023. "Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region," Energies, MDPI, vol. 16(21), pages 1-16, October.
    2. Xiong, Yongkang & Zeng, Zhenfeng & Xin, Jianbo & Song, Guanhong & Xia, Yonghong & Xu, Zaide, 2023. "Renewable energy time series regulation strategy considering grid flexible load and N-1 faults," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    2. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    3. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    4. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    5. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    6. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    7. Kang, Ligai & Yuan, Xiaoxue & Sun, Kangjie & Zhang, Xu & Zhao, Jun & Deng, Shuai & Liu, Wei & Wang, Yongzhen, 2022. "Feed-forward active operation optimization for CCHP system considering thermal load forecasting," Energy, Elsevier, vol. 254(PB).
    8. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Zhou, Yuan & Wang, Jiangjiang & Li, Yuxin & Wei, Changqi, 2023. "A collaborative management strategy for multi-objective optimization of sustainable distributed energy system considering cloud energy storage," Energy, Elsevier, vol. 280(C).
    10. Ghodusinejad, Mohammad Hasan & Lavasani, Zahra & Yousefi, Hossein, 2023. "A combined decision-making framework for techno-enviro-economic assessment of a commercial CCHP system," Energy, Elsevier, vol. 276(C).
    11. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    12. Huang, Chang & Yan, Yixian & Madonski, Rafal & Zhang, Qi & Deng, Hui, 2023. "Improving operation strategies for solar-based distributed energy systems: Matching system design with operation," Energy, Elsevier, vol. 276(C).
    13. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    14. Chen, Yuzhu & Xu, Jinzhao & Zhao, Dandan & Wang, Jun & Lund, Peter D., 2021. "Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump," Energy, Elsevier, vol. 230(C).
    15. Li, Yiming & Liu, Che & Zhang, Lizhi & Sun, Bo, 2021. "A partition optimization design method for a regional integrated energy system based on a clustering algorithm," Energy, Elsevier, vol. 219(C).
    16. Chen, Yuzhu & Hu, Xiaojian & Xu, Wentao & Xu, Qiliang & Wang, Jun & Lund, Peter D., 2022. "Multi-objective optimization of a solar-driven trigeneration system considering power-to-heat storage and carbon tax," Energy, Elsevier, vol. 250(C).
    17. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    18. Xiao Gong & Fan Li & Bo Sun & Dong Liu, 2020. "Collaborative Optimization of Multi-Energy Complementary Combined Cooling, Heating, and Power Systems Considering Schedulable Loads," Energies, MDPI, vol. 13(4), pages 1-17, February.
    19. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    20. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.