IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p212-d1307690.html
   My bibliography  Save this article

Power Quality and Break-Even Points in the Use of Electric Motorcycles in the Case of the Thailand Residential Building

Author

Listed:
  • Santipont Ananwattanaporn

    (School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Atthapol Ngaopitakkul

    (School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Chaiyan Jettanasen

    (School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

Abstract

The use of electric motorcycles (EMCs) is rapidly increasing because EMCs are comparable in price to internal combustion engine motorcycles (ICE motorcycles), can be charged at home, and do not cause pollution. However, using EMCs in residential electrical systems is still a new issue in Thailand, as the Thai power grid was not originally designed to support electric vehicle charging. Therefore, the effect that may occur on the electrical system of a house should be studied. In this study, the power quality when charging an EMC in a residential electrical system is investigated by considering the circuits of various electrical devices according to their actual consumption behavior. Three electric motorcycles with battery capacities of 20, 30, and 40 Ah were used to investigate the effects of charging these motorcycles through the electrical system of a house. The experiment was conducted in a laboratory that replicated the electrical system of a house, and the conditions and patterns of power consumption were identical in all three cases. The test results were considered in terms of power quality, voltage harmonics, and current power system harmonics to analyze the effects on the electrical system in each circuit and to compare the charging differences of each motorcycle model. Next, it was determined that using an EMC is more cost-effective than using an ICE motorcycle. ICE motorcycles will eventually be completely replaced by EMCs, and our research will enable informed decision-making for electric motorcycle riders, researchers, and automotive corporations.

Suggested Citation

  • Santipont Ananwattanaporn & Atthapol Ngaopitakkul & Chaiyan Jettanasen, 2023. "Power Quality and Break-Even Points in the Use of Electric Motorcycles in the Case of the Thailand Residential Building," Sustainability, MDPI, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:212-:d:1307690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    2. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    2. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    3. Liu, Chang-Yi & Wang, Hui & Tang, Juan & Chang, Ching-Ter & Liu, Zhi, 2021. "Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    4. Deqing Ma & Pengcheng Ma & Jinsong Hu, 2024. "The Impact of Blockchain Technology Adoption on an E-Commerce Closed-Loop Supply Chain Considering Consumer Trust," Sustainability, MDPI, vol. 16(4), pages 1-41, February.
    5. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    6. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    7. Chen, Jiumei & Zhang, Wen & Gong, Bengang & Zhang, Xiaoqi & Li, Hongping, 2022. "Optimal policy for the recycling of electric vehicle retired power batteries," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Abubakr, Hussein & Lashab, Abderezak & Vasquez, Juan C. & Mohamed, Tarek Hassan & Guerrero, Josep M., 2023. "Novel V2G regulation scheme using Dual-PSS for PV islanded microgrid," Applied Energy, Elsevier, vol. 340(C).
    9. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    10. Wang, Jian & He, Shulin, 2023. "Government interventions in closed-loop supply chains with modularity design," International Journal of Production Economics, Elsevier, vol. 264(C).
    11. Xu, Jie & Huang, Yuping, 2022. "The short-term optimal resource allocation approach for electric vehicles and V2G service stations," Applied Energy, Elsevier, vol. 319(C).
    12. Yi, Tao & Cheng, Xiaobin & Peng, Peng, 2022. "Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: A framework based on MCS and DBPSO," Energy, Elsevier, vol. 239(PC).
    13. Hu, Yusha & Man, Yi, 2022. "Two-stage energy scheduling optimization model for complex industrial process and its industrial verification," Renewable Energy, Elsevier, vol. 193(C), pages 879-894.
    14. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    15. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    16. Anna Pražanová & Vaclav Knap & Daniel-Ioan Stroe, 2022. "Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective," Energies, MDPI, vol. 15(19), pages 1-44, October.
    17. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    18. Tang, Yanyan & Zhang, Qi & Liu, Boyu & Li, Yan & Ni, Ruiyan & Wang, Yi, 2023. "What influences residents’ intention to participate in the electric vehicle battery recycling? Evidence from China," Energy, Elsevier, vol. 276(C).
    19. Debnath, Ramit & Bardhan, Ronita & Reiner, David M. & Miller, J.R., 2021. "Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Li, Chengzhe & Zhang, Libo & Ou, Zihan & Wang, Qunwei & Zhou, Dequn & Ma, Jiayu, 2022. "Robust model of electric vehicle charging station location considering renewable energy and storage equipment," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:212-:d:1307690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.