IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004040.html
   My bibliography  Save this article

Carbon-aware dynamic tariff design for electric vehicle charging stations with explainable stochastic optimization

Author

Listed:
  • Silva, Carlos A.M.
  • Bessa, Ricardo J.

Abstract

The electrification of the transport sector is a critical element in the transition to a low-emissions economy, driven by the widespread adoption of electric vehicles (EV) and the integration of renewable energy sources (RES). However, managing the increasing demand for EV charging infrastructure while meeting carbon emission reduction targets is a significant challenge for charging station operators. This work introduces a novel carbon-aware dynamic pricing framework for EV charging, formulated as a chance-constrained optimization problem to consider forecast uncertainties in RES generation, load, and grid carbon intensity. The model generates day-ahead dynamic tariffs for EV drivers with a certain elastic behavior while optimizing costs and complying with a carbon emissions budget. Different types of budgets for Scope 2 emissions (indirect emissions of purchased electricity consumed by a company) are conceptualized and demonstrate the advantages of a stochastic approach over deterministic models in managing emissions under forecast uncertainty, improving the reduction rate of emissions per feasible day of optimization by 24 %. Additionally, a surrogate machine learning model is proposed to approximate the outcomes of stochastic optimization, enabling the application of state-of-the-art explainability techniques to enhance understanding and communication of dynamic pricing decisions under forecast uncertainty. It was found that lower tariffs are explained, for instance, by periods of higher renewable energy availability and lower market prices and that the most important feature was the hour of the day.

Suggested Citation

  • Silva, Carlos A.M. & Bessa, Ricardo J., 2025. "Carbon-aware dynamic tariff design for electric vehicle charging stations with explainable stochastic optimization," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004040
    DOI: 10.1016/j.apenergy.2025.125674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.