IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas036054422202182x.html
   My bibliography  Save this article

A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification

Author

Listed:
  • Lizana, Jesus
  • Halloran, Claire E.
  • Wheeler, Scot
  • Amghar, Nabil
  • Renaldi, Renaldi
  • Killendahl, Markus
  • Perez-Maqueda, Luis A.
  • McCulloch, Malcolm
  • Chacartegui, Ricardo

Abstract

Heating decarbonisation through electrification is a difficult challenge due to the considerable increase in peak power demand. This research proposes a novel modelling approach that utilises easily accessible national-level data to identify the required heat storage volume in buildings to decrease peak power demand and maximises carbon reductions associated with electrified heating technologies through smart demand-side response. The approach assesses the optimal shifting of heat pump operation to meet thermal heating demand according to different heat storage capacities in buildings, which are defined in relation to the time (in hours) in which the heating demand can be provided directly from the heat battery, without heat pump operation. Ten scenarios (S) are analysed: two baselines (S1–S2) and eight load shifting strategies (S3–S10) based on hourly and daily demand-side responses. Moreover, they are compared with a reference scenario (S0), with heating currently based on fossil fuels. The approach was demonstrated in two different regions, Spain and the United Kingdom. The optimal heat storage capacity was found on the order of 12 and 24 h of heating demand in both countries, reducing additional power capacity by 30–37% and 40–46%, respectively. However, the environmental benefits of heat storage alternatives were similar to the baseline scenario due to higher energy consumption and marginal power generation based on fossil fuels. It was also found that load shifting capability below 4 h presents limited benefits, reducing additional power capacity by 10% at the national scale. The results highlight the importance of integrated heat storage technologies with the electrification of heat in highly gas-dependent regions. They can mitigate the need for an additional fossil-based dispatchable generation to meet high peak demand. The modelling approach provides a high-level strategy with regional specificity that, due to common datasets, can be easily replicated globally. For reproducibility, the code base and datasets are found on GitHub.

Suggested Citation

  • Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s036054422202182x
    DOI: 10.1016/j.energy.2022.125298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202182X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
    2. Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
    3. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    4. Edmunds, Calum & Galloway, Stuart & Dixon, James & Bukhsh, Waqquas & Elders, Ian, 2021. "Hosting capacity assessment of heat pumps and optimised electric vehicle charging on low voltage networks," Applied Energy, Elsevier, vol. 298(C).
    5. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    6. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    7. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    8. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
    9. Catherine Mitchell, 2016. "Momentum is increasing towards a flexible electricity system based on renewables," Nature Energy, Nature, vol. 1(2), pages 1-6, February.
    10. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679, arXiv.org, revised May 2019.
    11. Ruhnau, Oliver & Muessel, Jarusch, 2022. "Update and extension of the When2Heat dataset," EconStor Preprints 249997, ZBW - Leibniz Information Centre for Economics.
    12. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
    14. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    15. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    16. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    17. Robert Gross & Richard Hanna, 2019. "Path dependency in provision of domestic heating," Nature Energy, Nature, vol. 4(5), pages 358-364, May.
    18. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    19. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    20. Leerbeck, Kenneth & Bacher, Peder & Junker, Rune Grønborg & Goranović, Goran & Corradi, Olivier & Ebrahimy, Razgar & Tveit, Anna & Madsen, Henrik, 2020. "Short-term forecasting of CO2 emission intensity in power grids by machine learning," Applied Energy, Elsevier, vol. 277(C).
    21. Lizana, Jesus & Serrano-Jimenez, Antonio & Ortiz, Carlos & Becerra, Jose A. & Chacartegui, Ricardo, 2018. "Energy assessment method towards low-carbon energy schools," Energy, Elsevier, vol. 159(C), pages 310-326.
    22. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Roth, 2023. "Power sector impacts of a simultaneous European heat pump rollout," Papers 2312.06589, arXiv.org.
    2. Manfren, Massimiliano & Nastasi, Benedetto, 2023. "Interpretable data-driven building load profiles modelling for Measurement and Verification 2.0," Energy, Elsevier, vol. 283(C).
    3. Halloran, Claire & Lizana, Jesus & Fele, Filiberto & McCulloch, Malcolm, 2024. "Data-based, high spatiotemporal resolution heat pump demand for power system planning," Applied Energy, Elsevier, vol. 355(C).
    4. Alexander Roth & Carlos Gaete-Morales & Dana Kirchem & Wolf-Peter Schill, 2023. "Power sector benefits of flexible heat pumps," Papers 2307.12918, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    2. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Lizana, Jesus & de-Borja-Torrejon, Manuel & Barrios-Padura, Angela & Auer, Thomas & Chacartegui, Ricardo, 2019. "Passive cooling through phase change materials in buildings. A critical study of implementation alternatives," Applied Energy, Elsevier, vol. 254(C).
    4. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    5. McGarry, Connor & Dixon, James & Flower, Jack & Bukhsh, Waqquas & Brand, Christian & Bell, Keith & Galloway, Stuart, 2024. "Electrified heat and transport: Energy demand futures, their impacts on power networks and what it means for system flexibility," Applied Energy, Elsevier, vol. 360(C).
    6. Blonsky, Michael & Maguire, Jeff & McKenna, Killian & Cutler, Dylan & Balamurugan, Sivasathya Pradha & Jin, Xin, 2021. "OCHRE: The Object-oriented, Controllable, High-resolution Residential Energy Model for Dynamic Integration Studies," Applied Energy, Elsevier, vol. 290(C).
    7. Thomaßen, Georg & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo, 2021. "The decarbonisation of the EU heating sector through electrification: A parametric analysis," Energy Policy, Elsevier, vol. 148(PA).
    8. Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
    9. Zhang, Yichi & Johansson, Pär & Kalagasidis, Angela Sasic, 2021. "Techno-economic assessment of thermal energy storage technologies for demand-side management in low-temperature individual heating systems," Energy, Elsevier, vol. 236(C).
    10. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    13. Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, vol. 12(1), pages 1-27, December.
    14. Heinen, Steve & Burke, Daniel & O'Malley, Mark, 2016. "Electricity, gas, heat integration via residential hybrid heating technologies – An investment model assessment," Energy, Elsevier, vol. 109(C), pages 906-919.
    15. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    16. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    17. Besagni, Giorgio & Borgarello, Marco & Premoli Vilà, Lidia & Najafi, Behzad & Rinaldi, Fabio, 2020. "MOIRAE – bottom-up MOdel to compute the energy consumption of the Italian REsidential sector: Model design, validation and evaluation of electrification pathways," Energy, Elsevier, vol. 211(C).
    18. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    19. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    20. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s036054422202182x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.