IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/249997.html
   My bibliography  Save this paper

Update and extension of the When2Heat dataset

Author

Listed:
  • Ruhnau, Oliver
  • Muessel, Jarusch

Abstract

The "When2Heat" dataset comprises synthetic national time series for heat demand and heat pumps' coefficient of performance (COP) in hourly resolution. Heat demands for space and water heating are computed by combining gas standard load profiles with spatial temperature reanalysis data and population geodata. With this update, we extend the dataset to 28 European countries and the period from 2008 to 2019, including new, state-of-the-art data sources. For the geographical extension, we propose a novel approach, shifting established German heat demand curves based on country-specific heating thresholds to account for regional differences in thermal insulation and user behavior. Using the example of Italy, we illustrate the effect of shifting heat demand curves. The dataset, scripts, and input parameters are publicly available under an open-source license on the Open Power System Data platform.

Suggested Citation

  • Ruhnau, Oliver & Muessel, Jarusch, 2022. "Update and extension of the When2Heat dataset," EconStor Preprints 249997, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:249997
    Note: This is an update and extension of the original When2Heat dataset described in: Ruhnau, O., Hirth, L., Praktiknjo, A., 2019. Time series of heat demand and heat pump efficiency for energy system modeling. Sci Data 6, 189. https://doi.org/10.1038/s41597-019-0199-y
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/249997/1/Ruhnau%20and%20Muessel%202022.%20Update%20and%20extension%20of%20the%20When2Heat%20dataset.%20Working%20Paper.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Ruhnau & Clemens Stiewe & Jarusch Muessel & Lion Hirth, 2023. "Natural gas savings in Germany during the 2022 energy crisis," Nature Energy, Nature, vol. 8(6), pages 621-628, June.
    2. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    2. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    4. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    6. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    7. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.
    8. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    9. Markus Schindler & Lukas Gnam & Markus Puchegger & Karina Medwenitsch & Patricia Jasek, 2023. "Optimization-Based Operation of District Heating Networks: A Case Study for Two Real Sites," Energies, MDPI, vol. 16(5), pages 1-15, February.
    10. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org.
    11. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Finke, Jonas & Bertsch, Valentin & Di Cosmo, Valeria, 2023. "Exploring the feasibility of Europe’s renewable expansion plans based on their profitability in the market," Energy Policy, Elsevier, vol. 177(C).
    13. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Ziemele, Jelena & Talcis, Normunds & Osis, Ugis & Dace, Elina, 2021. "A methodology for selecting a sustainable development strategy for connecting low heat density consumers to a district heating system by cascading of heat carriers," Energy, Elsevier, vol. 230(C).
    15. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    16. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    17. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).
    18. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Chen, Zhang & Liu, Jun & Liu, Xinglei, 2022. "GPU accelerated power flow calculation of integrated electricity and heat system with component-oriented modeling of district heating network," Applied Energy, Elsevier, vol. 305(C).
    20. Qiuyi Wu, 2023. "Theoretical Evaluation of Photovoltaic Thermal Water Source Heat Pump, Application Potential and Policy Implications: Evidence from Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.

    More about this item

    Keywords

    Heat demand; Heat pumps; Coefficient of performance; Europe;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:249997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.