IDEAS home Printed from https://ideas.repec.org/f/pru376.html
   My authors  Follow this author

Oliver Ruhnau

Personal Details

First Name:Oliver
Middle Name:
Last Name:Ruhnau
Suffix:
RePEc Short-ID:pru376
[This author has chosen not to make the email address public]
https://www.hertie-school.org/phd/ruhnau/

Affiliation

Hertie School

Berlin, Germany
http://www.hertie-school.org
RePEc:edi:hertide (more details at EDIRC)

Research output

as
Jump to: Working papers Articles Chapters

Working papers

  1. Hirth, Lion & Khanna, Tarun & Ruhnau, Oliver, 2022. "The (very) short-term price elasticity of German electricity demand," EconStor Preprints 249570, ZBW - Leibniz Information Centre for Economics.
  2. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing emissions," EconStor Preprints 253267, ZBW - Leibniz Information Centre for Economics.
  3. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing power sector emissions," EconStor Preprints 258999, ZBW - Leibniz Information Centre for Economics.
  4. Stiewe, Clemens & Ruhnau, Oliver & Hirth, Lion, 2022. "European industry responds to high energy prices: The case of German ammonia production," EconStor Preprints 253251, ZBW - Leibniz Information Centre for Economics.
  5. Ruhnau, Oliver & Muessel, Jarusch, 2022. "Update and extension of the When2Heat dataset," EconStor Preprints 249997, ZBW - Leibniz Information Centre for Economics.
  6. Ruhnau, Oliver & Qvist, Staffan, 2021. "Storage requirements in a 100% renewable electricity system: Extreme events and inter-annual variability," EconStor Preprints 236723, ZBW - Leibniz Information Centre for Economics.
  7. Ruhnau, Oliver & Bucksteeg, Michael & Ritter, David & Schmitz, Richard & Böttger, Diana & Koch, Matthias & Pöstges, Arne & Wiedmann, Michael & Hirth, Lion, 2021. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," EconStor Preprints 234468, ZBW - Leibniz Information Centre for Economics.
  8. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium," EconStor Preprints 233852, ZBW - Leibniz Information Centre for Economics.
  9. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2021. "Phasing out coal - An impact analysis comparing five large-scale electricity market models," EconStor Preprints 234102, ZBW - Leibniz Information Centre for Economics.
  10. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.
  11. Cloete, Schalk & Ruhnau, Oliver & Cloete, Jan Hendrik & Hirth, Lion, 2021. "Blue hydrogen and industrial base products: The future of fossil fuel exporters in a net-zero world," EconStor Preprints 234469, ZBW - Leibniz Information Centre for Economics.
  12. Hirth, Lion & Ruhnau, Oliver & Sgarlato, Raffaele, 2021. "The European Electricity Market Model EMMA - Model Description," EconStor Preprints 244592, ZBW - Leibniz Information Centre for Economics.
  13. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2021. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," EconStor Preprints 242981, ZBW - Leibniz Information Centre for Economics.
  14. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," EconStor Preprints 206688, ZBW - Leibniz Information Centre for Economics, revised 2020.
  15. Cloete, Schalk & Ruhnau, Oliver & Hirth, Lion, 2020. "On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems," EconStor Preprints 222474, ZBW - Leibniz Information Centre for Economics.
  16. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2020. "Electricity balancing as a market equilibrium: Estimating supply and demand of imbalance energy," EconStor Preprints 223062, ZBW - Leibniz Information Centre for Economics.
  17. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.
  18. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2015. "Economic Implications of Enhanced Forecast Accuracy: The Case of Photovoltaic Feed-In Forecasts," FCN Working Papers 6/2015, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

Articles

  1. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  2. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
  3. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
  4. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  5. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium: An instrument-based estimation of supply and demand for imbalance energy," Energy Economics, Elsevier, vol. 102(C).
  6. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
  7. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
  8. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.

Chapters

  1. Oliver Ruhnau & Reinhard Madlener, 2017. "Feed-In Forecasts for Photovoltaic Systems and Economic Implications of Enhanced Forecast Accuracy," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 511-516, Springer.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Hirth, Lion & Khanna, Tarun & Ruhnau, Oliver, 2022. "The (very) short-term price elasticity of German electricity demand," EconStor Preprints 249570, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Oliver Ruhnau & Clemens Stiewe & Jarusch Muessel & Lion Hirth, 2023. "Natural gas savings in Germany during the 2022 energy crisis," Nature Energy, Nature, vol. 8(6), pages 621-628, June.
    2. Koolen, Derck & Huisman, Ronald & Ketter, Wolfgang, 2022. "Decision strategies in sequential power markets with renewable energy," Energy Policy, Elsevier, vol. 167(C).

  2. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing emissions," EconStor Preprints 253267, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    2. Langenmayr, Uwe & Ruppert, Manuel, 2023. "Renewable origin, additionality, temporal and geographical correlation – eFuels production in Germany under the RED II regime," Energy Policy, Elsevier, vol. 183(C).

  3. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing power sector emissions," EconStor Preprints 258999, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    2. Langenmayr, Uwe & Ruppert, Manuel, 2023. "Renewable origin, additionality, temporal and geographical correlation – eFuels production in Germany under the RED II regime," Energy Policy, Elsevier, vol. 183(C).

  4. Stiewe, Clemens & Ruhnau, Oliver & Hirth, Lion, 2022. "European industry responds to high energy prices: The case of German ammonia production," EconStor Preprints 253251, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing emissions," EconStor Preprints 253267, ZBW - Leibniz Information Centre for Economics.
    2. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    3. Ruhnau, Oliver & Stiewe, Clemens & Muessel, Jarusch & Hirth, Lion, 2022. "Gas demand in times of crisis: energy savings by consumer group in Germany," EconStor Preprints 261082, ZBW - Leibniz Information Centre for Economics, revised 2022.
    4. Rüdiger Bachmann & David Baqaee & Christian Bayer & Moritz Kuhn & Andreas Löschel & Ben Mcwilliams & Benjamin Moll & Andreas Peichl & Karen Pittel & Moritz Schularick & Georg Zachmann, 2022. "How it can be done," SciencePo Working papers Main hal-03880930, HAL.
      • Rüdiger Bachmann & David Baqaee & Christian Bayer & Moritz Kuhn & Andreas Löschel & Ben McWilliams & Benjamin Moll & Andreas Peichl & Karen Pittel & Moritz Schularick & Georg Zachmann, 2022. "How it can be done," ECONtribute Policy Brief Series 034, University of Bonn and University of Cologne, Germany.
      • Rüdiger Bachmann & David Baqaee & Christian Bayer & Moritz Kuhn & Andreas Löschel & Ben Mcwilliams & Benjamin Moll & Andreas Peichl & Karen Pittel & Moritz Schularick & Georg Zachmann, 2022. "How it can be done," Working Papers hal-03880930, HAL.
    5. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing power sector emissions," EconStor Preprints 258999, ZBW - Leibniz Information Centre for Economics.
    6. Oliver Ruhnau & Clemens Stiewe & Jarusch Muessel & Lion Hirth, 2023. "Natural gas savings in Germany during the 2022 energy crisis," Nature Energy, Nature, vol. 8(6), pages 621-628, June.

  5. Ruhnau, Oliver & Muessel, Jarusch, 2022. "Update and extension of the When2Heat dataset," EconStor Preprints 249997, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Oliver Ruhnau & Clemens Stiewe & Jarusch Muessel & Lion Hirth, 2023. "Natural gas savings in Germany during the 2022 energy crisis," Nature Energy, Nature, vol. 8(6), pages 621-628, June.
    2. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).

  6. Ruhnau, Oliver & Qvist, Staffan, 2021. "Storage requirements in a 100% renewable electricity system: Extreme events and inter-annual variability," EconStor Preprints 236723, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.
    2. Henni, Sarah & Schäffer, Michael & Fischer, Peter & Weinhardt, Christof & Staudt, Philipp, 2023. "Bottom-up system modeling of battery storage requirements for integrated renewable energy systems," Applied Energy, Elsevier, vol. 333(C).
    3. Ikäheimo, Jussi & Lindroos, Tomi J. & Kiviluoma, Juha, 2023. "Impact of climate and geological storage potential on feasibility of hydrogen fuels," Applied Energy, Elsevier, vol. 342(C).

  7. Ruhnau, Oliver & Bucksteeg, Michael & Ritter, David & Schmitz, Richard & Böttger, Diana & Koch, Matthias & Pöstges, Arne & Wiedmann, Michael & Hirth, Lion, 2021. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," EconStor Preprints 234468, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.
    4. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2021. "Phasing out coal - An impact analysis comparing five large-scale electricity market models," EconStor Preprints 234102, ZBW - Leibniz Information Centre for Economics.
    5. Dinh Hoa Nguyen & Andrew Chapman & Takeshi Tsuji, 2023. "Assessing the Optimal Contributions of Renewables and Carbon Capture and Storage toward Carbon Neutrality by 2050," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    6. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    7. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Murmann, Alexander & Launer, Jann & Gaumnitz, Felix & van Ouwerkerk, Jonas & Mikurda, Jennifer & Torralba-Díaz, Laura, 2022. "Model-related outcome differences in power system models with sector coupling—Quantification and drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Hirth, Lion & Khanna, Tarun & Ruhnau, Oliver, 2022. "The (very) short-term price elasticity of German electricity demand," EconStor Preprints 249570, ZBW - Leibniz Information Centre for Economics.

  8. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium," EconStor Preprints 233852, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Karakoyun, Ece Cigdem & Avci, Harun & Kocaman, Ayse Selin & Nadar, Emre, 2023. "Deviations from commitments: Markov decision process formulations for the role of energy storage," International Journal of Production Economics, Elsevier, vol. 255(C).
    2. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    3. Kostelac, Matija & Pavić, Ivan & Zhang, Ning & Capuder, Tomislav, 2022. "Uncertainty modelling of an industry facility as a multi-energy demand response provider," Applied Energy, Elsevier, vol. 307(C).

  9. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2021. "Phasing out coal - An impact analysis comparing five large-scale electricity market models," EconStor Preprints 234102, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    2. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    3. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Do, Thang Nam & Burke, Paul J., 2023. "Phasing out coal power in a developing country context: Insights from Vietnam," Energy Policy, Elsevier, vol. 176(C).
    5. Marco Sebastian Breder & Felix Meurer & Michael Bucksteeg & Christoph Weber, 2022. "Spatial Incentives for Power-to-hydrogen through Market Splitting," EWL Working Papers 2203, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Jul 2022.

  10. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing emissions," EconStor Preprints 253267, ZBW - Leibniz Information Centre for Economics.
    2. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    3. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).
    4. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    6. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    7. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2021. "Phasing out coal - An impact analysis comparing five large-scale electricity market models," EconStor Preprints 234102, ZBW - Leibniz Information Centre for Economics.
    9. Andrea Dumančić & Nela Vlahinić Lenz & Goran Majstrović, 2023. "Can Hydrogen Production Be Economically Viable on the Existing Gas-Fired Power Plant Location? New Empirical Evidence," Energies, MDPI, vol. 16(9), pages 1-20, April.
    10. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing power sector emissions," EconStor Preprints 258999, ZBW - Leibniz Information Centre for Economics.
    11. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    12. Christoph Loschan & Daniel Schwabeneder & Matthias Maldet & Georg Lettner & Hans Auer, 2023. "Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market," Energies, MDPI, vol. 16(14), pages 1-35, July.
    13. Hirth, Lion & Ruhnau, Oliver & Sgarlato, Raffaele, 2021. "The European Electricity Market Model EMMA - Model Description," EconStor Preprints 244592, ZBW - Leibniz Information Centre for Economics.
    14. Roach, Martin & Meeus, Leonardo, 2023. "An energy system model to study the impact of combining carbon pricing with direct support for renewable gases," Ecological Economics, Elsevier, vol. 210(C).
    15. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    16. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    17. Liebensteiner, Mario & Naumann, Fabian, 2022. "Can carbon pricing counteract renewable energies’ cannibalization problem?," Energy Economics, Elsevier, vol. 115(C).

  11. Hirth, Lion & Ruhnau, Oliver & Sgarlato, Raffaele, 2021. "The European Electricity Market Model EMMA - Model Description," EconStor Preprints 244592, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.
    3. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2021. "Phasing out coal - An impact analysis comparing five large-scale electricity market models," EconStor Preprints 234102, ZBW - Leibniz Information Centre for Economics.
    5. Hirth, Lion & Khanna, Tarun & Ruhnau, Oliver, 2022. "The (very) short-term price elasticity of German electricity demand," EconStor Preprints 249570, ZBW - Leibniz Information Centre for Economics.

  12. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2021. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," EconStor Preprints 242981, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Yang, Huayu & Yan, Bowen & Chen, Wei & Fan, Daming, 2023. "Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2021. "Phasing out coal - An impact analysis comparing five large-scale electricity market models," EconStor Preprints 234102, ZBW - Leibniz Information Centre for Economics.
    3. Kröger, David & Peper, Jan & Rehtanz, Christian, 2023. "Electricity market modeling considering a high penetration of flexible heating systems and electric vehicles," Applied Energy, Elsevier, vol. 331(C).

  13. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," EconStor Preprints 206688, ZBW - Leibniz Information Centre for Economics, revised 2020.

    Cited by:

    1. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    2. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    3. Finke, Jonas & Bertsch, Valentin & Di Cosmo, Valeria, 2023. "Exploring the feasibility of Europe’s renewable expansion plans based on their profitability in the market," Energy Policy, Elsevier, vol. 177(C).
    4. Qiuyi Wu, 2023. "Theoretical Evaluation of Photovoltaic Thermal Water Source Heat Pump, Application Potential and Policy Implications: Evidence from Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    5. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Markus Schindler & Lukas Gnam & Markus Puchegger & Karina Medwenitsch & Patricia Jasek, 2023. "Optimization-Based Operation of District Heating Networks: A Case Study for Two Real Sites," Energies, MDPI, vol. 16(5), pages 1-15, February.
    7. Charitopoulos, V. & Fajardy, M. & Chyong, C. K. & Reiner, D., 2022. "The case of 100% electrification of domestic heat in Great Britain," Cambridge Working Papers in Economics 2210, Faculty of Economics, University of Cambridge.
    8. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    9. Chen, Zhang & Liu, Jun & Liu, Xinglei, 2022. "GPU accelerated power flow calculation of integrated electricity and heat system with component-oriented modeling of district heating network," Applied Energy, Elsevier, vol. 305(C).
    10. Javanshir, Nima & Syri, Sanna & Tervo, Seela & Rosin, Argo, 2023. "Operation of district heat network in electricity and balancing markets with the power-to-heat sector coupling," Energy, Elsevier, vol. 266(C).
    11. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.
    12. Sun, X.Y. & Zhong, X.H. & Zhang, M.Y. & Zhou, T., 2022. "Experimental investigation on a novel wind-to-heat system with high efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org.
    15. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    16. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Ziemele, Jelena & Talcis, Normunds & Osis, Ugis & Dace, Elina, 2021. "A methodology for selecting a sustainable development strategy for connecting low heat density consumers to a district heating system by cascading of heat carriers," Energy, Elsevier, vol. 230(C).
    18. Ruhnau, Oliver & Muessel, Jarusch, 2022. "Update and extension of the When2Heat dataset," EconStor Preprints 249997, ZBW - Leibniz Information Centre for Economics.
    19. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).
    21. Simon Hilpert, 2020. "Effects of Decentral Heat Pump Operation on Electricity Storage Requirements in Germany," Energies, MDPI, vol. 13(11), pages 1-19, June.
    22. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.

  14. Cloete, Schalk & Ruhnau, Oliver & Hirth, Lion, 2020. "On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems," EconStor Preprints 222474, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    2. Cloete, Schalk & Ruhnau, Oliver & Cloete, Jan Hendrik & Hirth, Lion, 2021. "Blue hydrogen and industrial base products: The future of fossil fuel exporters in a net-zero world," EconStor Preprints 234469, ZBW - Leibniz Information Centre for Economics.
    3. Oscar Utomo & Muditha Abeysekera & Carlos E. Ugalde-Loo, 2021. "Optimal Operation of a Hydrogen Storage and Fuel Cell Coupled Integrated Energy System," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    4. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.
    5. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    6. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.

  15. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2020. "Electricity balancing as a market equilibrium: Estimating supply and demand of imbalance energy," EconStor Preprints 223062, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Felix Röben & Hans Schäfers & Anna Meißner & Jerom de Haan, 2021. "Smart Balancing of Electrical Power in Germany: Fuzzy Logic Model to Simulate Market Response," Energies, MDPI, vol. 14(8), pages 1-25, April.

  16. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.

    Cited by:

    1. Dujardin, Jérôme & Schillinger, Moritz & Kahl, Annelen & Savelsberg, Jonas & Schlecht, Ingmar & Lordan-Perret, Rebecca, 2022. "Optimized market value of alpine solar photovoltaic installations," Renewable Energy, Elsevier, vol. 186(C), pages 878-888.
    2. Frederik vom Scheidt & Jingyi Qu & Philipp Staudt & Dharik S. Mallapragada & Christof Weinhardt, 2021. "Integrating Hydrogen in Single-Price Electricity Systems: The Effects of Spatial Economic Signals," Papers 2105.00130, arXiv.org, revised Nov 2021.
    3. Böttger, Diana & Härtel, Philipp, 2022. "On wholesale electricity prices and market values in a carbon-neutral energy system," Energy Economics, Elsevier, vol. 106(C).
    4. vom Scheidt, Frederik & Qu, Jingyi & Staudt, Philipp & Mallapragada, Dharik S. & Weinhardt, Christof, 2022. "Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals," Energy Policy, Elsevier, vol. 161(C).
    5. Johannes Brauer & Manuel Villavicencio & Johannes Trüby, 2022. "Green hydrogen – How grey can it be?," RSCAS Working Papers 2022/44, European University Institute.
    6. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Diana Bottger & Philipp Hartel, 2021. "On Wholesale Electricity Prices and Market Values in a Carbon-Neutral Energy System," Papers 2105.01127, arXiv.org.
    8. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

Articles

  1. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    See citations under working paper version above.
  2. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
    See citations under working paper version above.
  3. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    See citations under working paper version above.
  4. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    See citations under working paper version above.
  5. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium: An instrument-based estimation of supply and demand for imbalance energy," Energy Economics, Elsevier, vol. 102(C).

    Cited by:

    1. Marián Tomašov & Milan Straka & Dávid Martinko & Peter Braciník & Ľuboš Buzna, 2023. "A Feasibility Study of Profiting from System Imbalance Using Residential Electric Vehicle Charging Infrastructure," Energies, MDPI, vol. 16(23), pages 1-27, November.
    2. Karakoyun, Ece Cigdem & Avci, Harun & Kocaman, Ayse Selin & Nadar, Emre, 2023. "Deviations from commitments: Markov decision process formulations for the role of energy storage," International Journal of Production Economics, Elsevier, vol. 255(C).
    3. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    4. Kostelac, Matija & Pavić, Ivan & Zhang, Ning & Capuder, Tomislav, 2022. "Uncertainty modelling of an industry facility as a multi-energy demand response provider," Applied Energy, Elsevier, vol. 307(C).

  6. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.

    Cited by:

    1. Li, Yi & Liu, Tianya & Xu, Jinpeng, 2023. "Analyzing the economic, social, and technological determinants of renewable and nonrenewable electricity production in China: Findings from time series models," Energy, Elsevier, vol. 282(C).
    2. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    3. Musawenkosi Lethumcebo Thanduxolo Zulu & Rudiren Pillay Carpanen & Remy Tiako, 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    4. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    5. Leonard Burg & Gonca Gürses-Tran & Reinhard Madlener & Antonello Monti, 2021. "Comparative Analysis of Load Forecasting Models for Varying Time Horizons and Load Aggregation Levels," Energies, MDPI, vol. 14(21), pages 1-16, November.
    6. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).

  7. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    See citations under working paper version above.
  8. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.

    Cited by:

    1. David Borge-Diez, 2022. "Energy Policy, Energy Research, and Energy Politics: An Analytical Review of the Current Situation," Energies, MDPI, vol. 15(23), pages 1-13, November.
    2. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    3. Ramachandran Kannan & Evangelos Panos & Stefan Hirschberg & Tom Kober, 2022. "A net‐zero Swiss energy system by 2050: Technological and policy options for the transition of the transportation sector," Futures & Foresight Science, John Wiley & Sons, vol. 4(3-4), September.
    4. Cloete, Schalk & Ruhnau, Oliver & Cloete, Jan Hendrik & Hirth, Lion, 2021. "Blue hydrogen and industrial base products: The future of fossil fuel exporters in a net-zero world," EconStor Preprints 234469, ZBW - Leibniz Information Centre for Economics.
    5. Daniel González-Prieto & Yolanda Fernández-Nava & Elena Marañón & Maria Manuela Prieto, 2020. "Effect of Decarbonisation Policies and Climate Change on Environmental Impacts due to Heating and Cooling in a Single-Family House," Sustainability, MDPI, vol. 12(9), pages 1-22, April.
    6. Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    8. Ferrada, Francisco & Babonneau, Frederic & Homem-de-Mello, Tito & Jalil-Vega, Francisca, 2023. "The role of hydrogen for deep decarbonization of energy systems: A Chilean case study," Energy Policy, Elsevier, vol. 177(C).
    9. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
    10. Bellocchi, S. & De Iulio, R. & Guidi, G. & Manno, M. & Nastasi, B. & Noussan, M. & Prina, M.G. & Roberto, R., 2020. "Analysis of smart energy system approach in local alpine regions - A case study in Northern Italy," Energy, Elsevier, vol. 202(C).
    11. Zhao, Ning & You, Fengqi, 2020. "Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?," Applied Energy, Elsevier, vol. 279(C).
    12. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Ryan Thomas Trahan & Brad Jantz, 2023. "What is ESG? Rethinking the “E” pillar," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4382-4391, November.
    14. Seyedfarzad Sarfarazi & Marc Deissenroth-Uhrig & Valentin Bertsch, 2020. "Aggregation of Households in Community Energy Systems: An Analysis from Actors’ and Market Perspectives," Energies, MDPI, vol. 13(19), pages 1-37, October.
    15. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Kim, Jin-Kuk, 2022. "Studies on the conceptual design of energy recovery and utility systems for electrified chemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Ruhnau, Oliver, 2021. "How flexible electricity demand stabilizes wind and solar market values: the case of hydrogen electrolyzers," EconStor Preprints 233976, ZBW - Leibniz Information Centre for Economics.
    18. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    19. Halilovic, Smajil & Odersky, Leonhard & Hamacher, Thomas, 2022. "Integration of groundwater heat pumps into energy system optimization models," Energy, Elsevier, vol. 238(PA).
    20. Ruhnau, O. & Bucksteeg, M. & Ritter, D. & Schmitz, R. & Böttger, D. & Koch, M. & Pöstges, A. & Wiedmann, M. & Hirth, L., 2022. "Why electricity market models yield different results: Carbon pricing in a model-comparison experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    21. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    22. Potrč, Sanja & Nemet, Andreja & Čuček, Lidija & Varbanov, Petar Sabev & Kravanja, Zdravko, 2022. "Synthesis of a regenerative energy system – beyond carbon emissions neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    23. Martin, H. & Buffat, R. & Bucher, D. & Hamper, J. & Raubal, M., 2022. "Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    24. Martin Rüdisüli & Sinan L. Teske & Urs Elber, 2019. "Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System," Energies, MDPI, vol. 12(12), pages 1-38, June.
    25. Viesi, Diego & Crema, Luigi & Mahbub, Md Shahriar & Verones, Sara & Brunelli, Roberto & Baggio, Paolo & Fauri, Maurizio & Prada, Alessandro & Bello, Andrea & Nodari, Benedetta & Silvestri, Silvia & To, 2020. "Integrated and dynamic energy modelling of a regional system: A cost-optimized approach in the deep decarbonisation of the Province of Trento (Italy)," Energy, Elsevier, vol. 209(C).
    26. Wang, Y. & Wang, J. & He, W., 2022. "Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    27. Frischmuth, Felix & Härtel, Philipp, 2022. "Hydrogen sourcing strategies and cross-sectoral flexibility trade-offs in net-neutral energy scenarios for Europe," Energy, Elsevier, vol. 238(PB).
    28. Edenhofer, Ottmar & Flachsland, Christian & Kalkuhl, Matthias & Knopf, Brigitte & Pahle, Michael, 2019. "Optionen für eine CO2-Preisreform," Working Papers 04/2019, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    29. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," EconStor Preprints 206688, ZBW - Leibniz Information Centre for Economics, revised 2020.
    30. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    31. Kockel, Christina & Nolting, Lars & Priesmann, Jan & Praktiknjo, Aaron, 2022. "Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case," Applied Energy, Elsevier, vol. 308(C).
    32. João Abel Peças Lopes & André Guimarães Madureira & Manuel Matos & Ricardo Jorge Bessa & Vítor Monteiro & João Luiz Afonso & Sérgio F. Santos & João P. S. Catalão & Carlos Henggeler Antunes & Pedro Ma, 2020. "The future of power systems: Challenges, trends, and upcoming paradigms," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    33. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    34. Wan Rashidi Bin Wan Ramli & Apostolos Pesyridis & Dhrumil Gohil & Fuhaid Alshammari, 2020. "Organic Rankine Cycle Waste Heat Recovery for Passenger Hybrid Electric Vehicles," Energies, MDPI, vol. 13(17), pages 1-27, September.
    35. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    36. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    37. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    38. Huckebrink, David & Bertsch, Valentin, 2022. "Decarbonising the residential heating sector: A techno-economic assessment of selected technologies," Energy, Elsevier, vol. 257(C).
    39. Gunawan, Tubagus Aryandi & Monaghan, Rory F.D., 2022. "Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks," Applied Energy, Elsevier, vol. 308(C).
    40. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    41. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.

Chapters

  1. Oliver Ruhnau & Reinhard Madlener, 2017. "Feed-In Forecasts for Photovoltaic Systems and Economic Implications of Enhanced Forecast Accuracy," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 511-516, Springer.

    Cited by:

    1. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 18 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (18) 2015-10-25 2019-11-25 2020-08-17 2020-09-21 2020-12-21 2021-05-10 2021-05-24 2021-05-31 2021-06-14 2021-06-14 2021-08-16 2021-10-11 2021-11-08 2022-02-21 2022-03-07 2022-05-16 2022-05-23 2022-06-20. Author is listed
  2. NEP-REG: Regulation (11) 2019-11-25 2020-08-17 2020-09-21 2020-12-21 2021-05-10 2021-05-24 2021-05-31 2021-06-14 2021-08-16 2022-02-21 2022-05-23. Author is listed
  3. NEP-ENV: Environmental Economics (7) 2020-08-17 2021-05-31 2021-06-14 2021-06-14 2021-10-11 2022-05-23 2022-06-20. Author is listed
  4. NEP-CIS: Confederation of Independent States (1) 2022-05-16
  5. NEP-CMP: Computational Economics (1) 2015-10-25
  6. NEP-FOR: Forecasting (1) 2015-10-25
  7. NEP-INT: International Trade (1) 2022-05-16
  8. NEP-ISF: Islamic Finance (1) 2021-08-16
  9. NEP-ORE: Operations Research (1) 2019-11-25

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Oliver Ruhnau should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.