IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v87y2024i2d10.1007_s10640-022-00746-2.html
   My bibliography  Save this article

Cost-Potential Curves of Onshore Wind Energy: the Role of Disamenity Costs

Author

Listed:
  • Oliver Ruhnau

    (Hertie School)

  • Anselm Eicke

    (Hertie School)

  • Raffaele Sgarlato

    (Hertie School)

  • Tim Tröndle

    (ETH Zurich)

  • Lion Hirth

    (Hertie School)

Abstract

Numerical optimization models are used to develop scenarios of the future energy system. Usually, they optimize the energy mix subject to engineering costs such as equipment and fuel. For onshore wind energy, some of these models use cost-potential curves that indicate how much electricity can be generated at what cost. These curves are upward sloping mainly because windy sites are occupied first and further expanding wind energy means deploying less favorable resources. Meanwhile, real-world wind energy expansion is curbed by local resistance, regulatory constraints, and legal challenges. This presumably reflects the perceived adverse effect that onshore wind energy has on the local human population, as well as other negative external effects. These disamenity costs are at the core of this paper. We provide a comprehensive and consistent set of cost-potential curves of wind energy for all European countries that include disamenity costs, and which can be used in energy system modeling. We combine existing valuation of disamenity costs from the literature that describe the costs as a function of the distance between turbine and households with gridded population data, granular geospatial data of wind speeds, and additional land-use constraints to calculate such curves. We find that disamenity costs are not a game changer: for most countries and assumptions, the marginal levelized cost of onshore wind energy increase by 0.2–12.5 €/MWh.

Suggested Citation

  • Oliver Ruhnau & Anselm Eicke & Raffaele Sgarlato & Tim Tröndle & Lion Hirth, 2024. "Cost-Potential Curves of Onshore Wind Energy: the Role of Disamenity Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 347-368, February.
  • Handle: RePEc:kap:enreec:v:87:y:2024:i:2:d:10.1007_s10640-022-00746-2
    DOI: 10.1007/s10640-022-00746-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-022-00746-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-022-00746-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Dröes, Martijn I. & Koster, Hans R.A., 2016. "Renewable energy and negative externalities: The effect of wind turbines on house prices," Journal of Urban Economics, Elsevier, vol. 96(C), pages 121-141.
    3. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan & Vance, Colin, 2019. "Local cost for global benefit: The case of wind turbines," Ruhr Economic Papers 791, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen, revised 2019.
    4. Ben Hoen & Carol Atkinson-Palombo, 2016. "Wind Turbines, Amenities and Disamenities: A Study of Home Value Impacts in Densely Populated Massachusetts," Journal of Real Estate Research, American Real Estate Society, vol. 38(4), pages 473-504.
    5. Gibbons, Stephen, 2015. "Gone with the wind: Valuing the visual impacts of wind turbines through house prices," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 177-196.
    6. R. McKenna & J. M. Weinand & I. Mulalic & S. Petrović & K. Mainzer & T. Preis & H. S. Moat, 2021. "Scenicness assessment of onshore wind sites with geotagged photographs and impacts on approval and cost-efficiency," Nature Energy, Nature, vol. 6(6), pages 663-672, June.
    7. Horowitz, John K. & McConnell, Kenneth E., 2002. "A Review of WTA/WTP Studies," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 426-447, November.
    8. Cathrine Ulla Jensen & Toke Emil Panduro & Thomas Hedemark Lundhede, 2014. "The Vindication of Don Quixote: The Impact of Noise and Visual Pollution from Wind Turbines," Land Economics, University of Wisconsin Press, vol. 90(4), pages 668-682.
    9. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Ben Hoen & Jason Brown & Thomas Jackson & Mark Thayer & Ryan Wiser & Peter Cappers, 2015. "Spatial Hedonic Analysis of the Effects of US Wind Energy Facilities on Surrounding Property Values," The Journal of Real Estate Finance and Economics, Springer, vol. 51(1), pages 22-51, July.
    11. Cathrine Ulla Jensen & Toke Emil Panduro & Thomas Hedemark Lundhede, 2014. "The Vindication of Don Quixote: The Impact of Noise and Visual Pollution from Wind Turbines," Land Economics, University of Wisconsin Press, vol. 90(4), pages 668-682.
    12. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Westlund & Mats Wilhelmsson, 2021. "The Socio-Economic Cost of Wind Turbines: A Swedish Case Study," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    2. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan & Vance, Colin, 2019. "Local cost for global benefit: The case of wind turbines," Ruhr Economic Papers 791, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen, revised 2019.
    3. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    4. Jensen, Cathrine Ulla & Panduro, Toke Emil & Lundhede, Thomas Hedemark & Nielsen, Anne Sofie Elberg & Dalsgaard, Mette & Thorsen, Bo Jellesmark, 2018. "The impact of on-shore and off-shore wind turbine farms on property prices," Energy Policy, Elsevier, vol. 116(C), pages 50-59.
    5. Marvin Schütt, 2024. "Wind Turbines and Property Values: A Meta-Regression Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(1), pages 1-43, January.
    6. Mathias Mier & Patrick Hoffmann, 2022. "Wind Turbine Placement and Externalities," ifo Working Paper Series 369, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    7. Jan von Detten & Johann V. Seebaß & Jan C. Schlüter & Florian Hackelberg, 2023. "Influence of onshore wind turbines on land values [Einfluss von Onshore-Windenergieanlagen auf den Grundstückswert]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 9(1), pages 63-80, April.
    8. Yingdan Mei & Pengfei Liu & Lina Meng & Lu Lin, 2024. "Evaluate the Impacts of Wind Farm Facilities on Land Values with Geographically-Linked Microdata in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 465-489, February.
    9. Thomson, Heather & Kempton, Willett, 2018. "Perceptions and attitudes of residents living near a wind turbine compared with those living near a coal power plant," Renewable Energy, Elsevier, vol. 123(C), pages 301-311.
    10. Dröes, Martijn I. & Koster, Hans R.A., 2021. "Wind turbines, solar farms, and house prices," Energy Policy, Elsevier, vol. 155(C).
    11. Ki, Jaehong & Yun, Sun-Jin & Kim, Woo-Chang & Oh, Subin & Ha, Jihun & Hwangbo, Eunyoung & Lee, Hyoeun & Shin, Sumin & Yoon, Seulki & Youn, Hyewon, 2022. "Local residents’ attitudes about wind farms and associated noise annoyance in South Korea," Energy Policy, Elsevier, vol. 163(C).
    12. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    13. Heintzelman, Martin D. & Vyn, Richard J. & Guth, Sarah, 2017. "Understanding the Amenity Impacts of Wind Development on an International Border," Ecological Economics, Elsevier, vol. 137(C), pages 195-206.
    14. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    15. Voltaire, Louinord & Koutchade, Obafèmi Philippe, 2020. "Public acceptance of and heterogeneity in behavioral beach trip responses to offshore wind farm development in Catalonia (Spain)," Resource and Energy Economics, Elsevier, vol. 60(C).
    16. Dong, Luran & Gaur, Vasundhara & Lang, Corey, 2023. "Property value impacts of onshore wind energy in New England: The importance of spatial heterogeneity and temporal dynamics," Energy Policy, Elsevier, vol. 179(C).
    17. Yushi Kunugi & Toshi H. Arimura & Miwa Nakai, 2021. "The Long-Term Impact of Wind Power Generation on a Local Community: Economics Analysis of Subjective Well-Being Data in Chōshi City," Energies, MDPI, vol. 14(13), pages 1-18, July.
    18. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    19. Pates, Nicholas J. & Kim, GwanSeon & Mark, Tyler B. & Ritter, Matthias, 2020. "Windfalls or wind falls? The Local Effects of Turbine Development on US Agricultural Land Values," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304611, Agricultural and Applied Economics Association.
    20. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:87:y:2024:i:2:d:10.1007_s10640-022-00746-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.