IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v102y2021ics014098832100373x.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids

Author

Listed:
  • Grimsrud, Kristine
  • Hagem, Cathrine
  • Lind, Arne
  • Lindhjem, Henrik

Abstract

Negative environmental externalities associated with wind power plants are due to the physical characteristics of turbine installations and associated power lines and the geographical siting. This paper presents an environmental taxation scheme for achieving efficient spatial distribution of new wind power production, taking account of both production and environmental costs. Further, the paper illustrates the impact of environmental taxation by means of a detailed numerical energy system model for Norway. The analyses show that a given target for wind power production can be achieved at a significantly lower social cost by implementing a tax scheme, compared to the current situation with no environmental taxes. The analyses also show that the environmental costs associated with both turbines and power lines were crucial to the efficient spatial allocation of wind power plants.

Suggested Citation

  • Grimsrud, Kristine & Hagem, Cathrine & Lind, Arne & Lindhjem, Henrik, 2021. "Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids," Energy Economics, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:eneeco:v:102:y:2021:i:c:s014098832100373x
    DOI: 10.1016/j.eneco.2021.105487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832100373X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ladenburg, Jacob & Hevia-Koch, Pablo & Petrović, Stefan & Knapp, Lauren, 2020. "The offshore-onshore conundrum: Preferences for wind energy considering spatial data in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Brennan, Noreen & Van Rensburg, Thomas M, 2016. "Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach," Energy Policy, Elsevier, vol. 94(C), pages 355-365.
    3. Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    6. Sergio Giaccaria & Vito Frontuto & Silvana Dalmazzone, 2016. "Valuing externalities from energy infrastructures through stated preferences: a geographically stratified sampling approach," Applied Economics, Taylor & Francis Journals, vol. 48(56), pages 5497-5512, December.
    7. Klaus Glenk & Robert J. Johnston & Jürgen Meyerhoff & Julian Sagebiel, 2020. "Spatial Dimensions of Stated Preference Valuation in Environmental and Resource Economics: Methods, Trends and Challenges," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(2), pages 215-242, February.
    8. Johannes Wagner, 2019. "Grid Investment and Support Schemes for Renewable Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
    10. Colin Price, 2017. "Landscape Economics," Springer Books, Springer, edition 2, number 978-3-319-54873-9, April.
    11. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    12. Eichhorn, Marcus & Tafarte, Philip & Thrän, Daniela, 2017. "Towards energy landscapes – “Pathfinder for sustainable wind power locations”," Energy, Elsevier, vol. 134(C), pages 611-621.
    13. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    14. Claudio Marcantonini, A. Denny Ellerman, 2015. "The Implicit Carbon Price of Renewable Energy Incentives in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    15. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    16. García, Jorge H. & Cherry, Todd L. & Kallbekken, Steffen & Torvanger, Asbjørn, 2016. "Willingness to accept local wind energy development: Does the compensation mechanism matter?," Energy Policy, Elsevier, vol. 99(C), pages 165-173.
    17. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    18. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    19. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    20. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Acceptance of national wind power development and exposure. A case-control choice experiment approach," Discussion Papers 933, Statistics Norway, Research Department.
    21. Bjørnebye, Henrik & Hagem, Cathrine & Lind, Arne, 2018. "Optimal location of renewable power," Energy, Elsevier, vol. 147(C), pages 1203-1215.
    22. M Hedblom & H Hedenås & M Blicharska & S Adler & I Knez & G Mikusiński & J Svensson & S Sandström & P Sandström & D. A. Wardle, 2020. "Landscape perception: linking physical monitoring data to perceived landscape properties," Landscape Research, Taylor & Francis Journals, vol. 45(2), pages 179-192, February.
    23. Seljom, Pernille & Rosenberg, Eva & Schäffer, Linn Emelie & Fodstad, Marte, 2020. "Bidirectional linkage between a long-term energy system and a short-term power market model," Energy, Elsevier, vol. 198(C).
    24. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    25. Lind, Arne & Rosenberg, Eva & Seljom, Pernille & Espegren, Kari & Fidje, Audun & Lindberg, Karen, 2013. "Analysis of the EU renewable energy directive by a techno-economic optimisation model," Energy Policy, Elsevier, vol. 60(C), pages 364-377.
    26. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    27. Helgesen, Per Ivar & Lind, Arne & Ivanova, Olga & Tomasgard, Asgeir, 2018. "Using a hybrid hard-linked model to analyze reduced climate gas emissions from transport," Energy, Elsevier, vol. 156(C), pages 196-212.
    28. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    29. Krekel, Christian & Zerrahn, Alexander, 2017. "Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 221-238.
    30. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    31. Cathrine Ulla Jensen & Toke Emil Panduro & Thomas Hedemark Lundhede, 2014. "The Vindication of Don Quixote: The Impact of Noise and Visual Pollution from Wind Turbines," Land Economics, University of Wisconsin Press, vol. 90(4), pages 668-682.
    32. Lindhjem, Henrik & Navrud, Ståle, 2008. "How reliable are meta-analyses for international benefit transfers?," Ecological Economics, Elsevier, vol. 66(2-3), pages 425-435, June.
    33. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    34. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    35. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    36. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    37. Cathrine Ulla Jensen & Toke Emil Panduro & Thomas Hedemark Lundhede, 2014. "The Vindication of Don Quixote: The Impact of Noise and Visual Pollution from Wind Turbines," Land Economics, University of Wisconsin Press, vol. 90(4), pages 668-682.
    38. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    39. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
    40. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2011. "Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines," Energy Policy, Elsevier, vol. 39(6), pages 3845-3854, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    2. Guillot, Victor & Siggini, Gildas & Assoumou, Edi, 2023. "Interactions between land and grid development in the transition to a decarbonized European power system," Energy Policy, Elsevier, vol. 175(C).
    3. Kristine Grimsrud & Cathrine Hagem & Kristina Haaskjold & Henrik Lindhjem & Megan Nowell, 2024. "Spatial Trade-Offs in National Land-Based Wind Power Production in Times of Biodiversity and Climate Crises," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 401-436, February.
    4. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristine Grimsrud & Cathrine Hagem & Arne Lind & Henrik Lindhjem, 2020. "Efficient spatial allocation of wind power plants given environmental externalities due to turbines and grids," Discussion Papers 938, Statistics Norway, Research Department.
    2. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    4. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    5. Tafarte, Philip & Lehmann, Paul, 2021. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity: A case study for Germany," UFZ Discussion Papers 2/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    6. Kristine Grimsrud & Cathrine Hagem & Kristina Haaskjold & Henrik Lindhjem & Megan Nowell, 2024. "Spatial Trade-Offs in National Land-Based Wind Power Production in Times of Biodiversity and Climate Crises," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 401-436, February.
    7. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    8. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    9. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    10. Cerdá, Emilio & López-Otero, Xiral & Quiroga, Sonia & Soliño, Mario, 2024. "Willingness to pay for renewables: Insights from a meta-analysis of choice experiments," Energy Economics, Elsevier, vol. 130(C).
    11. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    12. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Acceptance of national wind power development and exposure. A case-control choice experiment approach," Discussion Papers 933, Statistics Norway, Research Department.
    13. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    14. Anders Dugstad & Kristine M. Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2021. "Scope Elasticity of Willingness to pay in Discrete Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 21-57, September.
    15. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    16. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).
    17. Groh, Elke D., 2022. "Exposure to wind turbines, regional identity and the willingness to pay for regionally produced electricity," Resource and Energy Economics, Elsevier, vol. 70(C).
    18. Yushi Kunugi & Toshi H. Arimura & Miwa Nakai, 2021. "The Long-Term Impact of Wind Power Generation on a Local Community: Economics Analysis of Subjective Well-Being Data in Chōshi City," Energies, MDPI, vol. 14(13), pages 1-18, July.
    19. Jensen, Cathrine Ulla & Panduro, Toke Emil & Lundhede, Thomas Hedemark & Nielsen, Anne Sofie Elberg & Dalsgaard, Mette & Thorsen, Bo Jellesmark, 2018. "The impact of on-shore and off-shore wind turbine farms on property prices," Energy Policy, Elsevier, vol. 116(C), pages 50-59.
    20. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).

    More about this item

    Keywords

    Wind power; Wind power plant; Renewable energy; Environmental externalities; Environmental taxes; Energy system model;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:102:y:2021:i:c:s014098832100373x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.