IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v209y2023ics0921800923000757.html
   My bibliography  Save this article

Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany

Author

Listed:
  • Tafarte, Philip
  • Lehmann, Paul

Abstract

The deployment of onshore wind power is an important means to mitigate climate change. However, wind turbines also have negative impacts at the local scale, like disamenities to residents living nearby, changes in landscape quality, or conflicts with nature conservation. Our paper quantifies spatial trade-offs arising between these criteria. For this purpose, we propose a novel approach using Pareto frontiers and a Gini-like potential trade-off indicator. Our analysis builds on a spatial optimization model using geographical information system data for Germany. We show that spatial trade-offs between the criteria under consideration are substantial. The size of the trade-off varies substantially with the criteria under consideration, depending on the spatial heterogeneity of each criterion as well as on the spatial correlation between the criteria. Spatial trade-offs are particularly pronounced between nature conservation (measured by impacts on wind power-sensitive birds) and other criteria.

Suggested Citation

  • Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:ecolec:v:209:y:2023:i:c:s0921800923000757
    DOI: 10.1016/j.ecolecon.2023.107812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923000757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.107812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hermes, Johannes & Albert, Christian & von Haaren, Christina, 2018. "Assessing the aesthetic quality of landscapes in Germany," Ecosystem Services, Elsevier, vol. 31(PC), pages 296-307.
    2. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
    3. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
    4. Kienast, Felix & Huber, Nica & Hergert, Rico & Bolliger, Janine & Moran, Lorena Segura & Hersperger, Anna M., 2017. "Conflicts between decentralized renewable electricity production and landscape services – A spatially-explicit quantitative assessment for Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 397-407.
    5. Egli, Thomas & Bolliger, Janine & Kienast, Felix, 2017. "Evaluating ecosystem service trade-offs with wind electricity production in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 863-875.
    6. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    7. Atici, Kazim Baris & Simsek, Ahmet Bahadir & Ulucan, Aydin & Tosun, Mustafa Umur, 2015. "A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection," Utilities Policy, Elsevier, vol. 37(C), pages 86-96.
    8. Jan-Philipp Sasse & Evelina Trutnevyte, 2020. "Regional impacts of electricity system transition in Central Europe until 2035," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    9. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    10. Gigović, Ljubomir & Pamučar, Dragan & Božanić, Darko & Ljubojević, Srđan, 2017. "Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable Energy, Elsevier, vol. 103(C), pages 501-521.
    11. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    12. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
    13. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    14. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    15. Eriksen, Emil H. & Schwenk-Nebbe, Leon J. & Tranberg, Bo & Brown, Tom & Greiner, Martin, 2017. "Optimal heterogeneity in a simplified highly renewable European electricity system," Energy, Elsevier, vol. 133(C), pages 913-928.
    16. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    17. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L. Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna M, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    18. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    19. Schaber, Katrin & Steinke, Florian & Mühlich, Pascal & Hamacher, Thomas, 2012. "Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions," Energy Policy, Elsevier, vol. 42(C), pages 498-508.
    20. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    21. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    22. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    23. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    24. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    25. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    26. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2011. "Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines," Energy Policy, Elsevier, vol. 39(6), pages 3845-3854, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jessica Weber, 2023. "Coordination Challenges in Wind Energy Development: Lessons from Cross-Case Positive Planning Approaches to Avoid Multi-Level Governance ‘Free-Riding’," Land, MDPI, vol. 12(11), pages 1-25, October.
    2. Felix Reutter & Martin Drechsler & Erik Gawel & Paul Lehmann, 2024. "Social Costs of Setback Distances for Onshore Wind Turbines: A Model Analysis Applied to the German State of Saxony," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 437-463, February.
    3. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    4. Daniel Icaza-Alvarez & Nestor Daniel Galan-Hernandez & Eber Enrique Orozco-Guillen & Francisco Jurado, 2023. "Smart Energy Planning in the Midst of a Technological and Political Change towards a 100% Renewable System in Mexico by 2050," Energies, MDPI, vol. 16(20), pages 1-26, October.
    5. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tafarte, Philip & Lehmann, Paul, 2021. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity: A case study for Germany," UFZ Discussion Papers 2/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    2. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    3. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    4. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2020. "Managing spatial sustainability trade-offs: The case of wind power," UFZ Discussion Papers 4/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    6. Grimsrud, Kristine & Hagem, Cathrine & Lind, Arne & Lindhjem, Henrik, 2021. "Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids," Energy Economics, Elsevier, vol. 102(C).
    7. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    8. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    9. Kristine Grimsrud & Cathrine Hagem & Arne Lind & Henrik Lindhjem, 2020. "Efficient spatial allocation of wind power plants given environmental externalities due to turbines and grids," Discussion Papers 938, Statistics Norway, Research Department.
    10. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
    11. Peri, Erez & Tal, Alon, 2021. "Is setback distance the best criteria for siting wind turbines under crowded conditions? An empirical analysis," Energy Policy, Elsevier, vol. 155(C).
    12. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2023. "Incorporating indirect costs into energy system optimization models: Application to the Dutch national program Regional Energy Strategies," Energy, Elsevier, vol. 276(C).
    13. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    14. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    15. Franziska Steinberger & Tobias Minder & Evelina Trutnevyte, 2020. "Efficiency versus Equity in Spatial Siting of Electricity Generation: Citizen Preferences in a Serious Board Game in Switzerland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    16. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    17. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    18. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    19. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    20. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).

    More about this item

    Keywords

    Impact assessment; Renewable energy; Spatial optimization; Wind power;
    All these keywords.

    JEL classification:

    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:209:y:2023:i:c:s0921800923000757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.