IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v140y2020ics0301421520301403.html
   My bibliography  Save this article

Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe

Author

Listed:
  • Kozarcanin, S.
  • Hanna, R.
  • Staffell, I.
  • Gross, R.
  • Andresen, G.B.

Abstract

Residential demands for space heating and hot water account for 31% of the total European energy demand. Space heating is highly dependent on ambient conditions and susceptible to climate change. We adopt a techno-economic standpoint and assess the impact of climate change on decentralised heating demand and the cost-optimal mix of heat pump and gas boiler technologies. Temperature data with high spatial resolution from nine climate models implementing three Representative Concentration Pathways from IPCC are used to estimate climate induced changes in the European demand side for heating. The demand side is modelled by the proxy of heating-degree days. The supply side is modelled by using a screening curve approach to the economics of heat generation. We find that space heating demand decreases by about 16%, 24% and 42% in low, intermediate and extreme global warming scenarios. When considering historic weather data, we find a heterogeneous mix of technologies are cost-optimal, depending on the heating load factor (number of full-load hours per year). Increasing ambient temperatures toward the end-century improve the economic performance of heat pumps in all concentration pathways. Cost optimal technologies broadly correspond to heat markets and policies in Europe, with some exceptions.

Suggested Citation

  • Kozarcanin, S. & Hanna, R. & Staffell, I. & Gross, R. & Andresen, G.B., 2020. "Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe," Energy Policy, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301403
    DOI: 10.1016/j.enpol.2020.111386
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520301403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    2. Poputoaia, Diana & Bouzarovski, Stefan, 2010. "Regulating district heating in Romania: Legislative challenges and energy efficiency barriers," Energy Policy, Elsevier, vol. 38(7), pages 3820-3829, July.
    3. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2019. "Cost sensitivity of optimal sector-coupled district heating production systems," Energy, Elsevier, vol. 166(C), pages 624-636.
    4. Hanna, Richard & Leach, Matthew & Torriti, Jacopo, 2018. "Microgeneration: The installer perspective," Renewable Energy, Elsevier, vol. 116(PA), pages 458-469.
    5. Zimny, Jacek & Michalak, Piotr & Szczotka, Krzysztof, 2015. "Polish heat pump market between 2000 and 2013: European background, current state and development prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 791-812.
    6. Alban Kitous & Jacques Despres, 2017. "Assessment of the impact of climate change on residential energy demand for heating and cooling," JRC Research Reports JRC110191, Joint Research Centre (Seville site).
    7. Kranzl, Lukas & Kalt, Gerald & Müller, Andreas & Hummel, Marcus & Egger, Christiane & Öhlinger, Christine & Dell, Gerhard, 2013. "Renewable energy in the heating sector in Austria with particular reference to the region of Upper Austria," Energy Policy, Elsevier, vol. 59(C), pages 17-31.
    8. Robert Gross & Richard Hanna, 2019. "Path dependency in provision of domestic heating," Nature Energy, Nature, vol. 4(5), pages 358-364, May.
    9. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    10. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darko Goričanec & Igor Ivanovski & Jurij Krope & Danijela Urbancl, 2020. "The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration," Energies, MDPI, vol. 13(23), pages 1-12, November.
    2. Juan García-Cuadrado & Andrea Conserva & Juan Aranda & David Zambrana-Vasquez & Tatiana García-Armingol & Gema Millán, 2022. "Response Surface Method to Calculate Energy Savings Associated with Thermal Comfort Improvement in Buildings," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    3. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    4. Jordi García-Céspedes & Ignasi Herms & Georgina Arnó & José Juan de Felipe, 2022. "Fifth-Generation District Heating and Cooling Networks Based on Shallow Geothermal Energy: A review and Possible Solutions for Mediterranean Europe," Energies, MDPI, vol. 16(1), pages 1-31, December.
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Hassam ur Rehman & Janne Hirvonen & Juha Jokisalo & Risto Kosonen & Kai Sirén, 2020. "EU Emission Targets of 2050: Costs and CO 2 Emissions Comparison of Three Different Solar and Heat Pump-Based Community-Level District Heating Systems in Nordic Conditions," Energies, MDPI, vol. 13(16), pages 1-31, August.
    7. Jelena Tihana & Hesham Ali & Jekaterina Apse & Janis Jekabsons & Dmitrijs Ivancovs & Baiba Gaujena & Andrei Dedov, 2023. "Hybrid Heat Pump Performance Evaluation in Different Operation Modes for Single-Family House," Energies, MDPI, vol. 16(20), pages 1-17, October.
    8. Beccali, Marco & Bonomolo, Marina & Martorana, Francesca & Catrini, Pietro & Buscemi, Alessandro, 2022. "Electrical hybrid heat pumps assisted by natural gas boilers: a review," Applied Energy, Elsevier, vol. 322(C).
    9. Atienza-Márquez, Antonio & Domínguez Muñoz, Fernando & Fernández Hernández, Francisco & Cejudo López, José Manuel, 2022. "Domestic hot water production system in a hospital: Energy audit and evaluation of measures to boost the solar contribution," Energy, Elsevier, vol. 261(PB).
    10. Sung-Hoon Seol & Ahmed A. Serageldin & Oh Kyung Kwon, 2020. "Experimental Research on a Heat Pump Applying a Ball-Circulating Type Automatic Fouling Cleaning System for Fish Farms," Energies, MDPI, vol. 13(22), pages 1-18, November.
    11. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    12. Obalanlege, Mustapha A. & Xu, Jingyuan & Markides, Christos N. & Mahmoudi, Yasser, 2022. "Techno-economic analysis of a hybrid photovoltaic-thermal solar-assisted heat pump system for domestic hot water and power generation," Renewable Energy, Elsevier, vol. 196(C), pages 720-736.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    2. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    3. Renaldi, Renaldi & Hall, Richard & Jamasb, Tooraj & Roskilly, Anthony P., 2021. "Experience rates of low-carbon domestic heating technologies in the United Kingdom," Energy Policy, Elsevier, vol. 156(C).
    4. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
    5. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    8. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    11. Verástegui, Felipe & Lorca, Álvaro & Negrete-Pincetic, Matias & Olivares, Daniel, 2020. "Firewood heat electrification impacts in the Chilean power system," Energy Policy, Elsevier, vol. 144(C).
    12. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    13. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    14. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    15. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    16. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    17. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    18. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.
    19. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    20. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:140:y:2020:i:c:s0301421520301403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.