IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i10p10587-10605d41186.html
   My bibliography  Save this article

Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea

Author

Listed:
  • Jaewon Kwak

    (Hydroclimatic Statistical Research Group, Centre Eau Terre Environnement, INRS, Québec, QC G1K 9A9, Canada)

  • Huiseong Noh

    (Department of Civil Engineering, Inha University, Incheon 402-751, Korea)

  • Soojun Kim

    (Columbia Water Center, Earth Institute, Columbia University, New York, NY 10027, USA)

  • Vijay P. Singh

    (Department of Biological and Agricultural Engineering, Zachry Department of Civil Engineering, Texas A & M University, College Station, TX 77843, USA)

  • Seung Jin Hong

    (Department of Civil Engineering, Inha University, Incheon 402-751, Korea)

  • Duckgil Kim

    (Water Environment Research Department, Water Quality Assessment Research Division, National Institute of Environmental Research, Incheon 404-708, Korea)

  • Keonhaeng Lee

    (Water Resources Research Division, Water Resources and Environment Research Department, Korea Institute of Civil Engineering and Building Technology, Goyang-si, Gyeonggi-do 411-712, Korea)

  • Narae Kang

    (Department of Civil Engineering, Inha University, Incheon 402-751, Korea)

  • Hung Soo Kim

    (Department of Civil Engineering, Inha University, Incheon 402-751, Korea)

Abstract

Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001–2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.

Suggested Citation

  • Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:10:p:10587-10605:d:41186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/10/10587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/10/10587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. C. Thomson & F. J. Doblas-Reyes & S. J. Mason & R. Hagedorn & S. J. Connor & T. Phindela & A. P. Morse & T. N. Palmer, 2006. "Malaria early warnings based on seasonal climate forecasts from multi-model ensembles," Nature, Nature, vol. 439(7076), pages 576-579, February.
    2. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Peter W. Gething & David L. Smith & Anand P. Patil & Andrew J. Tatem & Robert W. Snow & Simon I. Hay, 2010. "Climate change and the global malaria recession," Nature, Nature, vol. 465(7296), pages 342-345, May.
    5. Simon I. Hay & Jonathan Cox & David J. Rogers & Sarah E. Randolph & David I. Stern & G. Dennis Shanks & Monica F. Myers & Robert W. Snow, 2002. "Climate change and the resurgence of malaria in the East African highlands," Nature, Nature, vol. 415(6874), pages 905-909, February.
    6. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    7. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.
    2. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    3. Mohd Danish Khan & Hong Ha Thi Vu & Quang Tuan Lai & Ji Whan Ahn, 2019. "Aggravation of Human Diseases and Climate Change Nexus," IJERPH, MDPI, vol. 16(15), pages 1-26, August.
    4. M. N. Lorenzo & I. Alvarez, 2022. "Future changes of hot extremes in Spain: towards warmer conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 383-402, August.
    5. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    6. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    7. Lu, Yongquan & Liu, Guilin & Xian, Yuyang & Tang, Jiaqi & Zhong, Liming, 2024. "Climate change brings both opportunities and challenges to rural revitalization in China: Evidence from apple geographical indication predictions," Agricultural Systems, Elsevier, vol. 216(C).
    8. Pedro Pérez-Cutillas & Pedro Baños Páez & Isabel Banos-González, 2020. "Variability of Water Balance under Climate Change Scenarios. Implications for Sustainability in the Rhône River Basin," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    9. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    10. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    11. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    12. Vassiliki Varela & Diamando Vlachogiannis & Athanasios Sfetsos & Stelios Karozis & Nadia Politi & Frédérique Giroud, 2019. "Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    13. Antolin, Luís A.S. & Heinemann, Alexandre B. & Marin, Fábio R., 2021. "Impact assessment of common bean availability in Brazil under climate change scenarios," Agricultural Systems, Elsevier, vol. 191(C).
    14. Krijn Paaijmans & Justine Blanford & Robert Crane & Michael Mann & Liang Ning & Kathleen Schreiber & Matthew Thomas, 2014. "Downscaling reveals diverse effects of anthropogenic climate warming on the potential for local environments to support malaria transmission," Climatic Change, Springer, vol. 125(3), pages 479-488, August.
    15. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    16. Gilardelli, Carlo & Confalonieri, Roberto & Cappelli, Giovanni Alessandro & Bellocchi, Gianni, 2018. "Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change," Ecological Modelling, Elsevier, vol. 368(C), pages 1-14.
    17. Huanbi Yue & Chunyang He & Qingxu Huang & Da Zhang & Peijun Shi & Enayat A. Moallemi & Fangjin Xu & Yang Yang & Xin Qi & Qun Ma & Brett A. Bryan, 2024. "Substantially reducing global PM2.5-related deaths under SDG3.9 requires better air pollution control and healthcare," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Kussel, Gerhard, 2016. "Adaptation to climate variability: Evidence from German households," Ruhr Economic Papers 625, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Daniel Ganea & Elena Mereuta & Liliana Rusu, 2018. "Estimation of the Near Future Wind Power Potential in the Black Sea," Energies, MDPI, vol. 11(11), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:10:p:10587-10605:d:41186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.