IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v4y2022i3p32-603d851767.html

Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling

Author

Listed:
  • Abhiru Aryal

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901-6603, USA)

  • Albira Acharya

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901-6603, USA)

  • Ajay Kalra

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901-6603, USA)

Abstract

Climate change has caused uncertainty in the hydrological pattern including weather change, precipitation fluctuations, and extreme temperature, thus triggering unforeseen natural tragedies such as hurricanes, flash flooding, heatwave and more. Because of these unanticipated events occurring all around the globe, the study of the influence of climate change on the alteration of flooding patterns has gained a lot of attention. This research study intends to provide an insight into how the future projected streamflow will affect the flooding-inundation extent by comparing the change in floodplain using both historical and future simulated scenarios. For the future projected data, the climate model Atmosphere/Ocean General Circulation Model (AOGCM) developed by Coupled Model Intercomparison Project Phase 6 (CMIP6) is used, which illustrates that the flood is increasing in considering climate models. Furthermore, a comparison of the existing flood inundation map by the Federal Emergency Management Agency (FEMA) study with the map generated by future projected streamflow data presents the entire inundation area in flood maps, implying the expansion area compared to FEMA needs to be considered in making emergency response plans. The effect of flooding in the inundation area from historical to future flow values, presented mathematically by a calculation of inundation extent percentage, infers that the considered watershed of Rock River is a flood-prone area. The goal is to provide insights on the importance of using the forecasted data for flood analysis and to offer the necessary background needed to strategize an emergency response plan for flood management.

Suggested Citation

  • Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
  • Handle: RePEc:gam:jforec:v:4:y:2022:i:3:p:32-603:d:851767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/4/3/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/4/3/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    2. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    3. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Correction to: Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 493-493, June.
    4. Hadush Meresa & Bernhard Tischbein & Tewodros Mekonnen, 2022. "Climate change impact on extreme precipitation and peak flood magnitude and frequency: observations from CMIP6 and hydrological models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2649-2679, April.
    5. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    6. Olkeba Tolessa Leta & Aly I. El-Kadi & Henrietta Dulai, 2018. "Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds," Sustainability, MDPI, vol. 10(6), pages 1-22, June.
    7. Jeong-Bae Kim & Jean de Dieu Habimana & Seon-Ho Kim & Deg-Hyo Bae, 2021. "Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on CMIP6 ESMs," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    8. Adam Krajewski & Anna E. Sikorska-Senoner & Leszek Hejduk & Kazimierz Banasik, 2021. "An Attempt to Decompose the Impact of Land Use and Climate Change on Annual Runoff in a Small Agricultural Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 881-896, February.
    9. Jie Yin & Dapeng Yu & Zhane Yin & Jun Wang & Shiyuan Xu, 2013. "Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China," Climatic Change, Springer, vol. 119(3), pages 919-932, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    2. Wiebe, Keith & Sulser, Timothy B & Dunston, Shahnila & Rosegrant, Mark W. & Fuglie, Keith & Willenbockel, Dirk & Nelson, Gerald C., 2020. "Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger," SocArXiv h2g6r, Center for Open Science.
    3. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    4. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    5. Emrah Yalcin, 2020. "Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 995-1017, April.
    6. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    7. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    8. Miao Liu & Yongsheng Ding & Zeyu Shen & Qiao Kong, 2025. "Alternating iterative coupling of hydrological and hydrodynamic models applied to Lingjiang river basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 291-320, January.
    9. Fei Ji & Xinyu Guo & Yucheng Wang & Katsumi Takayama, 2020. "Response of the Japanese flying squid (Todarodes pacificus) in the Japan Sea to future climate warming scenarios," Climatic Change, Springer, vol. 159(4), pages 601-618, April.
    10. Zenebe Mekonnen, 2020. "Precipitation and Temperature Projections for Medium High Emission Scenario by General Circulation Models for Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 23(4), pages 131-139, March.
    11. Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
    12. Matthias Kühnbach & Felix Guthoff & Anke Bekk & Ludger Eltrop, 2020. "Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System," Energies, MDPI, vol. 13(4), pages 1-23, February.
    13. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    14. Zhang, Huijin & Hu, Wenbo, 2025. "Unveiling the reality of carbon reduction: Is the Paris Agreement turning the world green or just painting it green?," Energy Economics, Elsevier, vol. 148(C).
    15. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    16. Nikolaos Karapetsas & Anne Gobin & George Bilas & Thomas M. Koutsos & Vasileios Pavlidis & Eleni Katragkou & Thomas K. Alexandridis, 2024. "Analysis of Land Suitability for Maize Production under Climate Change and Its Mitigation Potential through Crop Residue Management," Land, MDPI, vol. 13(1), pages 1-24, January.
    17. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    18. Lu, Yongquan & Liu, Guilin & Xian, Yuyang & Tang, Jiaqi & Zhong, Liming, 2024. "Climate change brings both opportunities and challenges to rural revitalization in China: Evidence from apple geographical indication predictions," Agricultural Systems, Elsevier, vol. 216(C).
    19. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    20. Vishal Singh & Anil Kumar Lohani & Sanjay Kumar Jain, 2022. "Reconstruction of extreme flood events by performing integrated real-time and probabilistic flood modeling in the Periyar river basin, Southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2433-2463, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:4:y:2022:i:3:p:32-603:d:851767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.