IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v101y2020i3d10.1007_s11069-020-03906-z.html
   My bibliography  Save this article

Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis

Author

Listed:
  • Emrah Yalcin

    (Kirsehir Ahi Evran University)

Abstract

This study assesses the effects of topography and land cover data resolutions on the estimates of flood extent, inundation depths, flow velocities, and arrival times of a two-dimensional (2D) hydrodynamic HEC-RAS model under differently sized mesh structures, with the example of the urban floodplain of Kilicozu Creek (Kirsehir, Turkey). To analyse these effects under a wide range of data conditions, seven different resolution digital surface models (DSMs) (from 0.0432 to 10 m/pixel) and Manning’s roughness layers (MRLs) (from 2 to 25 m/pixel) are produced for the subject floodplain by processing the high-quality DSM and orthophoto of the Kirsehir city centre. Additionally, seven different computational point spacings (CPSs) (from 2 m × 2 m to 25 m × 25 m) are tested to evaluate changes in the model outputs depending on the dimensions of mesh grids. Simulations are carried out for 19 different DSM, MRL, and CPS configurations under the 500-year flood scenario. The simulation performed for the most detailed model configuration is utilised as the base model simulation to compare the performances of other simulations. The model simulation configurated with the 2 m cell size DSM, 10 m cell size MRL, and 10 m × 10 m CPS shows comparable performance to the base model simulation with a small loss in the accuracy of the estimates, indicating that very-fine-resolution (less than 2 m) topography and high-resolution (less than 10 m) land cover data may not be indispensable to produce reliable simulations with 2D urban flood modelling using HEC-RAS software.

Suggested Citation

  • Emrah Yalcin, 2020. "Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 995-1017, April.
  • Handle: RePEc:spr:nathaz:v:101:y:2020:i:3:d:10.1007_s11069-020-03906-z
    DOI: 10.1007/s11069-020-03906-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03906-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03906-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Correction to: Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 493-493, June.
    2. Emlyn Hagen & X. Lu, 2011. "Let us create flood hazard maps for developing countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 841-843, September.
    3. G. Papaioannou & A. Loukas & L. Vasiliades & G. T. Aronica, 2016. "Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 117-132, October.
    4. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song-Yue Yang & Shaohua Marko Hsu & Ching Hsiao & Che-Hao Chang, 2023. "Digital elevation models for high-resolution base flood elevation mapping in a densely populated city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2693-2716, March.
    2. Fatemeh Yavari & Seyyed Ali Salehi Neyshabouri & Jafar Yazdi & Amir Molajou & Adam Brysiewicz, 2022. "A Novel Framework for Urban Flood damage Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1991-2011, April.
    3. Mayara Maria Arruda Gomes & Lívia Fragoso Melo Verçosa & José Almir Cirilo, 2021. "Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3121-3157, September.
    4. Irena Nimac & Ksenija Cindrić Kalin & Tanja Renko & Tatjana Vujnović & Kristian Horvath, 2022. "The analysis of summer 2020 urban flood in Zagreb (Croatia) from hydro-meteorological point of view," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 873-897, May.
    5. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    6. Azazkhan Pathan & Komali Kantamaneni & Prasit Agnihotri & Dhruvesh Patel & Saif Said & Sudhir Kumar Singh, 2022. "Integrated Flood Risk Management Approach Using Mesh Grid Stability and Hydrodynamic Model," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    7. Lloyd Ling & Zulkifli Yusop & Joan Lucille Ling, 2021. "Statistical and Type II Error Assessment of a Runoff Predictive Model in Peninsula Malaysia," Mathematics, MDPI, vol. 9(8), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    2. Shubham M. Jibhakate & P. V. Timbadiya & P. L. Patel, 2023. "Flood hazard assessment for the coastal urban floodplain using 1D/2D coupled hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1557-1590, March.
    3. Vishal Singh & Anil Kumar Lohani & Sanjay Kumar Jain, 2022. "Reconstruction of extreme flood events by performing integrated real-time and probabilistic flood modeling in the Periyar river basin, Southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2433-2463, July.
    4. Muhammad Saeed & Huan Li & Sami Ullah & Atta-ur Rahman & Amjad Ali & Rehan Khan & Waqas Hassan & Iqra Munir & Shuaib Alam, 2021. "Flood Hazard Zonation Using an Artificial Neural Network Model: A Case Study of Kabul River Basin, Pakistan," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    5. Fatemeh Yavari & Seyyed Ali Salehi Neyshabouri & Jafar Yazdi & Amir Molajou & Adam Brysiewicz, 2022. "A Novel Framework for Urban Flood damage Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1991-2011, April.
    6. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    7. Han-Chung Yang & Cheng-Wu Chen, 2012. "Potential hazard analysis from the viewpoint of flow measurement in large open-channel junctions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 803-813, March.
    8. H. Zaifoglu & A. M. Yanmaz & B. Akintug, 2019. "Developing flood mitigation measures for the northern part of Nicosia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 535-557, September.
    9. Nikunj K. Mangukiya & Ashutosh Sharma, 2022. "Flood risk mapping for the lower Narmada basin in India: a machine learning and IoT-based framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1285-1304, September.
    10. Neslihan Beden & Asli Ulke Keskin, 2021. "Flood map production and evaluation of flood risks in situations of insufficient flow data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2381-2408, February.
    11. Tewodros Assefa Nigussie & Abdusselam Altunkaynak, 2019. "Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1031-1047, November.
    12. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    13. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.
    14. Qiwei Yu & Alexis K. H. Lau & Kang T. Tsang & Jimmy C. H. Fung, 2018. "Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1011-1038, June.
    15. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    16. Yan Chen & Hao Hou & Yao Li & Luoyang Wang & Jinjin Fan & Ben Wang & Tangao Hu, 2022. "Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    17. Sadhan Malik & Subodh Chandra Pal & Alireza Arabameri & Indrajit Chowdhuri & Asish Saha & Rabin Chakrabortty & Paramita Roy & Biswajit Das, 2021. "GIS-based statistical model for the prediction of flood hazard susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16713-16743, November.
    18. Mayara Maria Arruda Gomes & Lívia Fragoso Melo Verçosa & José Almir Cirilo, 2021. "Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3121-3157, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:101:y:2020:i:3:d:10.1007_s11069-020-03906-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.