IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i2d10.1007_s11069-024-06838-0.html
   My bibliography  Save this article

Using social cartographies for the calibration of two-dimensional hydraulic flood models

Author

Listed:
  • Benjamín Alarcón

    (Universidad de Concepción)

  • Vicente Saenger

    (Universidad de Concepción)

  • Maricarmen Guerra

    (Universidad de Concepción)

  • Rodrigo Faúndez

    (Universidad de Concepción)

  • Felipe Link

    (Pontificia Universidad Católica de Chile)

  • Juan Antonio Carrasco

    (Universidad de Concepción)

  • Oscar Link

    (Universidad de Concepción)

Abstract

Accurate numerical simulations of floods provide precise hazard estimations and can improve risk management strategies. Unfortunately, flood events of extraordinary magnitude -needed for risk assessment- are rare and difficult to measure. Hence, numerical models are typically calibrated and validated using a few measured scenarios of moderate magnitudes. Flood social cartography, a participatory mapping method, identifies historically flood-prone areas based on the residents’ experience and knowledge. This research proposes using social cartographies to calibrate and validate hydraulic flood models. A numerical flood simulation model of the lower reach of the unregulated Carampangue River, Chile, was calibrated and validated using available information from gauges, satellite images, and social cartographies for the towns of Arauco and Ramadillas. The discharge magnitude of floods recorded in the social cartographies was determined. The quality of both models, calibrated with gauge data and with social cartography flood maps, was determined in each case by comparing computations with depth gauge data and satellite images through the root mean square error and the critical success index. Results show that social cartography participants recognized flooded areas corresponding to a discharge with a return period of 35 years. The calibration with social cartographies delivered a set of Manning’s roughness coefficients similar to those obtained using gauge data. The validation cases show that water depth and the extension of floods computed with the model calibrated using social cartographies is comparable to that computed using gauge data in the calibration process. RMSE from both calibrated models is of order 0.1 m. Consequently, the social cartography of floods constitutes a useful data source of extreme flood scenarios for calibrating and validating numerical flood models.

Suggested Citation

  • Benjamín Alarcón & Vicente Saenger & Maricarmen Guerra & Rodrigo Faúndez & Felipe Link & Juan Antonio Carrasco & Oscar Link, 2025. "Using social cartographies for the calibration of two-dimensional hydraulic flood models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1303-1323, January.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06838-0
    DOI: 10.1007/s11069-024-06838-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06838-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06838-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    2. Mayara Maria Arruda Gomes & Lívia Fragoso Melo Verçosa & José Almir Cirilo, 2021. "Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3121-3157, September.
    3. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Correction to: Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 493-493, June.
    4. Jenna Tyler & Abdul-Akeem Sadiq & Douglas S. Noonan, 2019. "A review of the community flood risk management literature in the USA: lessons for improving community resilience to floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1223-1248, April.
    5. Helmut Habersack & Bernhard Schober & Christoph Hauer, 2015. "Floodplain evaluation matrix (FEM): An interdisciplinary method for evaluating river floodplains in the context of integrated flood risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 5-32, February.
    6. Jian Fang & Feng Kong & Jiayi Fang & Lin Zhao, 2018. "Observed changes in hydrological extremes and flood disaster in Yangtze River Basin: spatial–temporal variability and climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 89-107, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrah Yalcin, 2020. "Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 995-1017, April.
    2. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    3. Miao Liu & Yongsheng Ding & Zeyu Shen & Qiao Kong, 2025. "Alternating iterative coupling of hydrological and hydrodynamic models applied to Lingjiang river basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(1), pages 291-320, January.
    4. Kui Xu & Zhentao Han & Lingling Bin & Ruozhu Shen & Yan Long, 2025. "Rapid forecasting of compound flooding for a coastal area based on data-driven approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1399-1421, January.
    5. Asif Sajjad & Jianzhong Lu & Xiaoling Chen & Sohail Yousaf & Nausheen Mazhar & Salman Shuja, 2024. "Flood hazard assessment in Chenab River basin using hydraulic simulation modeling and remote sensing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7679-7700, June.
    6. Shubham M. Jibhakate & P. V. Timbadiya & P. L. Patel, 2023. "Flood hazard assessment for the coastal urban floodplain using 1D/2D coupled hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1557-1590, March.
    7. Vishal Singh & Anil Kumar Lohani & Sanjay Kumar Jain, 2022. "Reconstruction of extreme flood events by performing integrated real-time and probabilistic flood modeling in the Periyar river basin, Southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2433-2463, July.
    8. Muhammad Saeed & Huan Li & Sami Ullah & Atta-ur Rahman & Amjad Ali & Rehan Khan & Waqas Hassan & Iqra Munir & Shuaib Alam, 2021. "Flood Hazard Zonation Using an Artificial Neural Network Model: A Case Study of Kabul River Basin, Pakistan," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    9. Fatemeh Yavari & Seyyed Ali Salehi Neyshabouri & Jafar Yazdi & Amir Molajou & Adam Brysiewicz, 2022. "A Novel Framework for Urban Flood damage Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1991-2011, April.
    10. Yixin Sun & Qiang Zhang & Wenlong Song & Senlin Tang & Vijay P. Singh, 2025. "Hydrological responses of three gorges reservoir region (China) to climate and land use and land cover changes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1505-1530, January.
    11. Welsch, David M. & Winden, Matthew W. & Zimmer, David M., 2022. "The effect of flood mitigation spending on flood damage: Accounting for dynamic feedback," Ecological Economics, Elsevier, vol. 192(C).
    12. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    13. Yiting Shao & Xiaohui Zhai & Xingmin Mu & Sen Zheng & Dandan Shen & Jinglin Qian, 2024. "An Attribution Analysis of Runoff Alterations in the Danjiang River Watershed for Sustainable Water Resource Management by Different Methods," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    14. Ruth Abegaz & Fei Wang & Jun Xu, 2024. "History, causes, and trend of floods in the U.S.: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 13715-13755, December.
    15. Melissa Haeffner & Dana Hellman, 2020. "The social geometry of collaborative flood risk management: a hydrosocial case study of Tillamook County, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3303-3325, September.
    16. Nina Baron, 2020. "Flood protection beyond protection against floods: how to make sense of controversies related to the building and maintenance of dikes in Denmark," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 967-984, August.
    17. Hye-Kyoung Lee & Young-Hoon Bae & Jong-Yeong Son & Won-Hwa Hong, 2020. "Analysis of Flood-Vulnerable Areas for Disaster Planning Considering Demographic Changes in South Korea," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    18. Ivan Petkov, 2023. "Public Investment in Hazard Mitigation: Effectiveness and the Role of Community Diversity," Economics of Disasters and Climate Change, Springer, vol. 7(1), pages 33-92, March.
    19. Donglai Jiao & Dajiang Wang & Haiyang Lv, 2020. "Effects of human activities on hydrological drought patterns in the Yangtze River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1111-1124, October.
    20. Livy, Mitchell R., 2023. "Assessing the housing price capitalization of non-destructive flooding events," Research in Economics, Elsevier, vol. 77(2), pages 265-274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06838-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.