IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i3d10.1007_s11069-021-04817-3.html
   My bibliography  Save this article

Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation

Author

Listed:
  • Mayara Maria Arruda Gomes

    (Federal University of Pernambuco)

  • Lívia Fragoso Melo Verçosa

    (Federal University of Pernambuco)

  • José Almir Cirilo

    (Federal University of Pernambuco)

Abstract

Floods are the most frequent natural disaster and pose a very challenging threat to many cities worldwide. Understanding the flood dynamic is essential for developing strategies to reduce its risk and damages, thus ensuring the cities’ protection. This study evaluated the Capibaribe River basin's hydrological response to extreme events and its impact on the city of Recife, in the northeast of Brazil. The CAWM IV and HEC-HMS models were coupled with a high-resolution 2D HEC-RAS model to simulate the flood events of 1975 and 2011 in Recife. CAWM IV is a newly developed hydrological model that presented very promising results for the data-scarce watersheds of the Brazilian semiarid region. For the 2D hydrodynamic modeling, 1-m LiDAR DEM was used. A reservoir operation model was also applied to assess the effect of the basin's main reservoirs on the water system upstream from Recife. Lastly, the 2011 flood event was simulated under the scenario of an absence of this reservoir system. The strategy used to address flooding simulation in an urban area proved to be satisfactory. Of the events simulated with CAWM IV, 60% have at least a satisfactory adjustment with NSEsqrtQ coefficients greater than 0.36 in 95% of cases. With the reservoir operation model, it was possible to calculate the peak flow of the events of 1975 and 2011 as being 2574 and 731 m3/s, respectively. The 2D HEC-RAS model presented a measure of fit of approximately 0.7. The study showed that the reservoir system was responsible for reducing flood extent by 70.3% in the 2011 event, but even with this system, this event still caused a flood covering an area of 6.01 km2. The results indicate that although the reservoirs prevent severe flooding in the lower course of the Capibaribe River, Recife is still vulnerable to flooding.

Suggested Citation

  • Mayara Maria Arruda Gomes & Lívia Fragoso Melo Verçosa & José Almir Cirilo, 2021. "Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3121-3157, September.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04817-3
    DOI: 10.1007/s11069-021-04817-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04817-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04817-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    2. Renato Vacondio & Francesca Aureli & Alessia Ferrari & Paolo Mignosa & Alessandro Dal Palù, 2016. "Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 103-125, January.
    3. Dhruvesh P. Patel & Jorge A. Ramirez & Prashant K. Srivastava & Michaela Bray & Dawei Han, 2017. "Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 93-130, October.
    4. G. Papaioannou & A. Loukas & L. Vasiliades & G. T. Aronica, 2016. "Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 117-132, October.
    5. Emrah Yalcin, 2020. "Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 995-1017, April.
    6. Shaochun Huang & Rohini Kumar & Martina Flörke & Tao Yang & Yeshewatesfa Hundecha & Philipp Kraft & Chao Gao & Alexander Gelfan & Stefan Liersch & Anastasia Lobanova & Michael Strauch & Floris Ogtrop , 2017. "Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide," Climatic Change, Springer, vol. 141(3), pages 381-397, April.
    7. Julio Pérez-Sánchez & Javier Senent-Aparicio & Francisco Segura-Méndez & David Pulido-Velazquez & Raghavan Srinivasan, 2019. "Evaluating Hydrological Models for Deriving Water Resources in Peninsular Spain," Sustainability, MDPI, vol. 11(10), pages 1-36, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanxia Shen & Chunbo Jiang, 2023. "A comprehensive review of watershed flood simulation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 875-902, September.
    2. Dipsikha Devi & Anupal Baruah & Arup Kumar Sarma, 2022. "Characterization of dam-impacted flood hydrograph and its degree of severity as a potential hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1989-2011, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Muhammad Farooq & Muhammad Shafique & Muhammad Shahzad Khattak, 2019. "Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 477-492, June.
    3. Shanshan Wen & Buda Su & Yanjun Wang & Jianqing Zhai & Hemin Sun & Ziyan Chen & Jinlong Huang & Anqian Wang & Tong Jiang, 2020. "Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China," Climatic Change, Springer, vol. 163(3), pages 1207-1226, December.
    4. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    5. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    6. Emrah Yalcin, 2020. "Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 995-1017, April.
    7. Ulysse Pasquier & Yi He & Simon Hooton & Marisa Goulden & Kevin M. Hiscock, 2019. "An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 915-937, September.
    8. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    9. Fabiana Navia Miranda & Tiago Miguel Ferreira, 2019. "A simplified approach for flood vulnerability assessment of historic sites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 713-730, March.
    10. Shijin Wang & Yanqiang Wei, 2019. "Water resource system risk and adaptive management of the Chinese Heihe River Basin in Asian arid areas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1271-1292, October.
    11. Balbi Stefano & Giupponi Carlo & Mojtahed Vahid & Olschewski Roland, 2015. "The Total Cost of Water-Related Disasters," Review of Economics, De Gruyter, vol. 66(2), pages 225-252, August.
    12. Edris Alam & Md Sabur Khan & Roquia Salam, 2022. "Vulnerability assessment based on household views from the Dammar Char in Southeastern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 329-344, August.
    13. Albert S. Chen & Michael J. Hammond & Slobodan Djordjević & David Butler & David M. Khan & William Veerbeek, 2016. "From hazard to impact: flood damage assessment tools for mega cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 857-890, June.
    14. Lloyd Ling & Zulkifli Yusop & Joan Lucille Ling, 2021. "Statistical and Type II Error Assessment of a Runoff Predictive Model in Peninsula Malaysia," Mathematics, MDPI, vol. 9(8), pages 1-24, April.
    15. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    16. Song-Yue Yang & Shaohua Marko Hsu & Ching Hsiao & Che-Hao Chang, 2023. "Digital elevation models for high-resolution base flood elevation mapping in a densely populated city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2693-2716, March.
    17. Xilin Liu & Huizhu Chen, 2020. "Regional assessment on ecological risk of ecosystems under natural hazards: an application in Guangdong Province (SE China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 205-229, January.
    18. Georgy Ayzel, 2023. "Runoff for Russia (RFR v1.0): The Large-Sample Dataset of Simulated Runoff and Its Characteristics," Data, MDPI, vol. 8(2), pages 1-13, January.
    19. H. Zaifoglu & A. M. Yanmaz & B. Akintug, 2019. "Developing flood mitigation measures for the northern part of Nicosia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 535-557, September.
    20. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04817-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.