IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2872-d232850.html
   My bibliography  Save this article

Evaluating Hydrological Models for Deriving Water Resources in Peninsular Spain

Author

Listed:
  • Julio Pérez-Sánchez

    (Department of Civil Engineering, Catholic University of San Antonio, Campus de los Jerónimos, s/n, Guadalupe, 30107 Murcia, Spain)

  • Javier Senent-Aparicio

    (Department of Civil Engineering, Catholic University of San Antonio, Campus de los Jerónimos, s/n, Guadalupe, 30107 Murcia, Spain)

  • Francisco Segura-Méndez

    (Department of Civil Engineering, Catholic University of San Antonio, Campus de los Jerónimos, s/n, Guadalupe, 30107 Murcia, Spain)

  • David Pulido-Velazquez

    (Department of Civil Engineering, Catholic University of San Antonio, Campus de los Jerónimos, s/n, Guadalupe, 30107 Murcia, Spain)

  • Raghavan Srinivasan

    (Spatial Science Laboratory, Ecosystem Science and Management Department, Texas A & M University, College Station, TX 77843, USA)

Abstract

Water availability is essential for the appropriate analysis of its sustainable management. We performed a comparative study of six hydrological balance models (Témez, ABCD, GR2M, AWBM, GUO-5p, and Thornthwaite-Mather) in several basins with different climatic conditions within Spain in the 1977–2010 period. We applied six statistical indices to compare the results of the models: the Akaike information criterion (AIC), the Bayesian information criterion (BIC), Nash–Sutcliffe model efficiency coefficient (NSE), coefficient of determination (R 2 ), percent bias (PBIAS), and the relative error between observed and simulated run-off volumes (REV). Furthermore, we applied the FITEVAL software to determine the uncertainty of the model. The results show that when the catchments are more humid the obtained results are better. The GR2M model gave the best fit in peninsular Spain in a UNEP aridity index framework above 1, and NSE values above 0.75 in a 95% confidence interval classify GR2M as very good for humid watersheds. The use of REV is also a key index in the assessment of the margin of error. Flow duration curves show good performance in the probabilities of exceedance lower than 80% in wet watersheds and deviations in low streamflows account for less than 5% of the total streamflow.

Suggested Citation

  • Julio Pérez-Sánchez & Javier Senent-Aparicio & Francisco Segura-Méndez & David Pulido-Velazquez & Raghavan Srinivasan, 2019. "Evaluating Hydrological Models for Deriving Water Resources in Peninsular Spain," Sustainability, MDPI, vol. 11(10), pages 1-36, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2872-:d:232850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier Senent-Aparicio & Sitian Liu & Julio Pérez-Sánchez & Adrián López-Ballesteros & Patricia Jimeno-Sáez, 2018. "Assessing Impacts of Climate Variability and Reforestation Activities on Water Resources in the Headwaters of the Segura River Basin (SE Spain)," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    2. Daniel Fylstra & Leon Lasdon & John Watson & Allan Waren, 1998. "Design and Use of the Microsoft Excel Solver," Interfaces, INFORMS, vol. 28(5), pages 29-55, October.
    3. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    4. M. Abulohom & S. Shah & A. Ghumman, 2001. "Development of a Rainfall-Runoff Model, its Calibration and Validation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(3), pages 149-163, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravindra Kumar Verma & Sangeeta Verma & Surendra Kumar Mishra & Ashish Pandey, 2021. "SCS-CN-Based Improved Models for Direct Surface Runoff Estimation from Large Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2149-2175, May.
    2. Mayara Maria Arruda Gomes & Lívia Fragoso Melo Verçosa & José Almir Cirilo, 2021. "Hydrologic models coupled with 2D hydrodynamic model for high-resolution urban flood simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3121-3157, September.
    3. Chengyan Tang & Jing Li & Zixiang Zhou & Li Zeng & Cheng Zhang & Hui Ran, 2019. "How to Optimize Ecosystem Services Based on a Bayesian Model: A Case Study of Jinghe River Basin," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    4. Maikel Mendez & Luis-Alexander Calvo-Valverde & Pablo Imbach & Ben Maathuis & David Hein-Grigg & Jorge-Andrés Hidalgo-Madriz & Luis-Fernando Alvarado-Gamboa, 2022. "Hydrological Response of Tropical Catchments to Climate Change as Modeled by the GR2M Model: A Case Study in Costa Rica," Sustainability, MDPI, vol. 14(24), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas A. Grossman, 2002. "Student Consulting Projects Benefit Faculty and Industry," Interfaces, INFORMS, vol. 32(2), pages 42-48, April.
    2. Leting Lyu & Xiaorui Wang & Caizhi Sun & Tiantian Ren & Defeng Zheng, 2019. "Quantifying the Effect of Land Use Change and Climate Variability on Green Water Resources in the Xihe River Basin, Northeast China," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    3. L. Gharis & J. Roise & J. McCarter, 2015. "A compromise programming model for developing the cost of including carbon pools and flux into forest management," Annals of Operations Research, Springer, vol. 232(1), pages 115-133, September.
    4. Benjamin Lev, 2000. "Book Reviews," Interfaces, INFORMS, vol. 30(2), pages 112-121, April.
    5. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    6. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    7. Martinez-Garcia, A.N. & Anderson, J., 2007. "Carnico-ICSPEA2--A metaheuristic co-evolutionary navigator for a complex co-evolutionary farming system," European Journal of Operational Research, Elsevier, vol. 179(3), pages 634-655, June.
    8. Kisekka, Isaya & Kandelous, Maziar M. & Sanden, Blake & Hopmans, Jan W., 2019. "Uncertainties in leaching assessment in micro-irrigated fields using water balance approach," Agricultural Water Management, Elsevier, vol. 213(C), pages 107-115.
    9. Keeling, Kellie B. & Pavur, Robert J., 2007. "A comparative study of the reliability of nine statistical software packages," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3811-3831, May.
    10. Alexandre Lemos & Pedro T. Monteiro & Inês Lynce, 2021. "Disruptions in timetables: a case study at Universidade de Lisboa," Journal of Scheduling, Springer, vol. 24(1), pages 35-48, February.
    11. Gabriella Colajanni & Alessandro Gobbi & Marinella Picchi & Alice Raffaele & Eugenia Taranto, 2023. "An Operations Research–Based Teaching Unit for Grade 10: The ROAR Experience, Part I," INFORMS Transactions on Education, INFORMS, vol. 23(2), pages 104-120, January.
    12. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    13. Raed Shatnawi, 2019. "Exploring trends in the evolution of open-source systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1516-1526, December.
    14. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    15. Douglas Mossman & Hongying Peng, 2016. "Using Dual Beta Distributions to Create “Proper†ROC Curves Based on Rating Category Data," Medical Decision Making, , vol. 36(3), pages 349-365, April.
    16. Fabrizio Maria Amoruso & Udo Dietrich & Thorsten Schuetze, 2018. "Development of a Building Information Modeling-Parametric Workflow Based Renovation Strategy for an Exemplary Apartment Building in Seoul, Korea," Sustainability, MDPI, vol. 10(12), pages 1-30, November.
    17. Zanakis, Stelios H. & Becerra-Fernandez, Irma, 2005. "Competitiveness of nations: A knowledge discovery examination," European Journal of Operational Research, Elsevier, vol. 166(1), pages 185-211, October.
    18. Blackhurst, Michael & Lima Azevedo, Inês & Scott Matthews, H. & Hendrickson, Chris T., 2011. "Designing building energy efficiency programs for greenhouse gas reductions," Energy Policy, Elsevier, vol. 39(9), pages 5269-5279, September.
    19. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    20. Hongfei Zhao & Hongming He & Jingjing Wang & Chunyu Bai & Chuangjuan Zhang, 2018. "Vegetation Restoration and Its Environmental Effects on the Loess Plateau," Sustainability, MDPI, vol. 10(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2872-:d:232850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.