IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v113y2022i1d10.1007_s11069-022-05302-1.html
   My bibliography  Save this article

Vulnerability assessment based on household views from the Dammar Char in Southeastern Bangladesh

Author

Listed:
  • Edris Alam

    (Rabdan Academy
    University of Chittagong)

  • Md Sabur Khan

    (University of Chittagong)

  • Roquia Salam

    (Begum Rokeya University)

Abstract

Assessing vulnerability is vital for developing new strategies and improving the existing ones to fulfill contemporary demands toward achieving a disaster-resilient society. Dammar Char is situated in the southeastern (SE) coastal region of Bangladesh that has experienced frequent coastal hazards and disasters throughout the year. The present study has constructed a vulnerability index utilizing the quantitative and qualitative data based on household surveys to evaluate the vulnerability of the people and community of Dammar Char. Data were collected from 180 respondents during November–December 2018. The results demonstrate that, on average, the people living in the studied area have a high vulnerability (value of the vulnerability index 0.7015) to coastal hazards and disasters. The vulnerability level differs from individual to individual based on their gender, educational status, financial capacity, structural strength of houses, perception of the respective hazards and disasters, etc. Females have experienced more vulnerability than their adult male counterparts. The natural vulnerability was higher than socioeconomic and physical vulnerability due to the increase in unpredictable extreme climate-induced coastal events. To combat the adverse impacts of coastal hazards and disasters, the local Dammar Char inhabitants have adopted several adaptation measures. The adapted measures are homestead gardening, working in seasonal day labor, fish drying, rearing sheep, and ducks, constructing plinths for elevating the floor of the house, extensive banana cultivation, and storage of dry foods to reduce their vulnerability.

Suggested Citation

  • Edris Alam & Md Sabur Khan & Roquia Salam, 2022. "Vulnerability assessment based on household views from the Dammar Char in Southeastern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 329-344, August.
  • Handle: RePEc:spr:nathaz:v:113:y:2022:i:1:d:10.1007_s11069-022-05302-1
    DOI: 10.1007/s11069-022-05302-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05302-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05302-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shabana Khan, 2012. "Vulnerability assessments and their planning implications: a case study of the Hutt Valley, New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1587-1607, November.
    2. Marilou P. Lucas & Isabelita M. Pabuayon, 2011. "Risk Perceptions, Attitudes, and Influential Factors of Rainfed Lowland Rice Farmers in Ilocos Norte, Philippines," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 8(2), pages 61-78, December.
    3. Daniel Sarewitz & Roger Pielke & Mojdeh Keykhah, 2003. "Vulnerability and Risk: Some Thoughts from a Political and Policy Perspective," Risk Analysis, John Wiley & Sons, vol. 23(4), pages 805-810, August.
    4. Anjum Tasnuva & Md. Riad Hossain & Roquia Salam & Abu Reza Md. Towfiqul Islam & Muhammad Mainuddin Patwary & Sobhy M. Ibrahim, 2021. "Employing social vulnerability index to assess household social vulnerability of natural hazards: an evidence from southwest coastal Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10223-10245, July.
    5. Gabi Hufschmidt, 2011. "A comparative analysis of several vulnerability concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 621-643, August.
    6. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    7. Lucas, Marilou P. & Pabuayon, Isabelita M., 2011. "Risk Perceptions, Attitudes, and Influential Factors of Rainfed Lowland Rice Farmers in Ilocos Norte, Philippines," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 8(2), pages 1-17, December.
    8. Bimal Paul & Munshi Rahman & Bankim Rakshit, 2011. "Post-Cyclone Sidr illness patterns in coastal Bangladesh: an empirical study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 841-852, March.
    9. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    10. Choyon Saha, 2015. "Dynamics of disaster-induced risk in southwestern coastal Bangladesh: an analysis on tropical Cyclone Aila 2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 727-754, January.
    11. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    12. Md Aboul Fazal Younus & Md Alamgir Kabir, 2018. "Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roquia Salam & Bonosri Ghose & Badhon Kumar Shill & Md. Aminul Islam & Abu Reza Md. Towfiqul Islam & Md. Abdus Sattar & G. M. Monirul Alam & Bayes Ahmed, 2021. "Perceived and actual risks of drought: household and expert views from the lower Teesta River Basin of northern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2569-2587, September.
    2. Uddhav Prasad Guragain & Philippe Doneys, 2022. "Social, Economic, Environmental, and Physical Vulnerability Assessment: An Index-Based Gender Analysis of Flood Prone Areas of Koshi River Basin in Nepal," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    3. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    4. Roquia Salam & Abu Reza Md. Towfiqul Islam & Badhon Kumar Shill & G. M. Monirul Alam & Md. Hasanuzzaman & Md. Morshadul Hasan & Sobhy M. Ibrahim & Roger C. Shouse, 2021. "Nexus between vulnerability and adaptive capacity of drought-prone rural households in northern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 509-527, March.
    5. Dilshad Ahmad & Muhammad Afzal & Abdur Rauf, 2019. "Analysis of wheat farmers’ risk perceptions and attitudes: evidence from Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 845-861, February.
    6. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    7. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    8. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    9. Karen E Engel, 2016. "Talcahuano, Chile, in the wake of the 2010 disaster: A vulnerable middle?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1057-1081, January.
    10. Emily Fucile-Sanchez & Meri Davlasheridze, 2020. "Adjustments of Socially Vulnerable Populations in Galveston County, Texas USA Following Hurricane Ike," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    11. Nicolas Rossignol & Pierre Delvenne & Catrinel Turcanu, 2015. "Rethinking Vulnerability Analysis and Governance with Emphasis on a Participatory Approach," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 129-141, January.
    12. Mohd Idris Nor Diana & Nurfashareena Muhamad & Mohd Raihan Taha & Ashraf Osman & Md. Mahmudul Alam, 2021. "Social Vulnerability Assessment for Landslide Hazards in Malaysia: A Systematic Review Study," Land, MDPI, vol. 10(3), pages 1-19, March.
    13. Mastronardi, Luigi & Cavallo, Aurora & Romagnoli, Luca, 2022. "A novel composite environmental fragility index to analyse Italian ecoregions’ vulnerability," Land Use Policy, Elsevier, vol. 122(C).
    14. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    15. Kylie Mason & Kirstin Lindberg & Carolin Haenfling & Allan Schori & Helene Marsters & Deborah Read & Barry Borman, 2021. "Social Vulnerability Indicators for Flooding in Aotearoa New Zealand," IJERPH, MDPI, vol. 18(8), pages 1-31, April.
    16. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    17. Harry W Fischer & Ashwini Chhatre, 2016. "Assets, livelihoods, and the ‘profile approach’ for analysis of differentiated social vulnerability in the context of climate change," Environment and Planning A, , vol. 48(4), pages 789-807, April.
    18. Muhammad Farhan & Muhammad Asim Yasin & Khuda Bakhsh & Rafaqet Ali & Sami Ullah & Saad Munir, 2022. "Determinants of risk attitude and risk perception under changing climate among farmers in Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2163-2176, November.
    19. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    20. Walter W. Piegorsch & Susan L. Cutter & Frank Hardisty, 2007. "Benchmark Analysis for Quantifying Urban Vulnerability to Terrorist Incidents," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1411-1425, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:113:y:2022:i:1:d:10.1007_s11069-022-05302-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.