IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5856-d442442.html
   My bibliography  Save this article

Experimental Research on a Heat Pump Applying a Ball-Circulating Type Automatic Fouling Cleaning System for Fish Farms

Author

Listed:
  • Sung-Hoon Seol

    (Department of Refrigeration and Air-conditioning Engineering, College of Engineering, Pukyong National University, Busan 48513, Korea)

  • Ahmed A. Serageldin

    (Shoubra Faculty of Engineering, Benha University, Benha 13512, Egypt)

  • Oh Kyung Kwon

    (Clean Energy R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea)

Abstract

In this research, automatic fouling cleaning systems that clean and prevent the deposit of fouling by regularly circulating sponge or ceramic balls are proposed. Characteristics of the finned and twisted inner tubes of the double pipe heat exchanger for the heat pump unit are also compared. Lastly, the 50RT-scale field test of the automatic fouling cleaning system integrated with the heat pump system was conducted by targeting temperature control of fish farms. The finned inner tube types presented a higher heat transfer rate than that of the twisted inner tube types. For the finned tube types, the refrigerant supply from the tangential direction was more advantageous due to the uniform distribution of refrigerant into 16 channels. The twisted tubes showed a higher water pressure drop than the finned inner tubes. An obvious increase in the fouling factor according to the operating hours was observed; however, it could be successfully decreased by operating the fouling cleaning system for 24 h. The overall heat transfer coefficient could be recovered from 5.87 kW/K to 24.05 kW/K, which is about 92% of the initial value. In short, the automatic fouling cleaning system can successfully prevent performance degradation of heat pump system due to fouling.

Suggested Citation

  • Sung-Hoon Seol & Ahmed A. Serageldin & Oh Kyung Kwon, 2020. "Experimental Research on a Heat Pump Applying a Ball-Circulating Type Automatic Fouling Cleaning System for Fish Farms," Energies, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5856-:d:442442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5856/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5856/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bergamini, Riccardo & Jensen, Jonas Kjær & Elmegaard, Brian, 2019. "Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution," Energy, Elsevier, vol. 182(C), pages 110-121.
    2. Kozarcanin, S. & Hanna, R. & Staffell, I. & Gross, R. & Andresen, G.B., 2020. "Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe," Energy Policy, Elsevier, vol. 140(C).
    3. Qureshi, Bilal Ahmed & Zubair, Syed M., 2012. "The impact of fouling on performance of a vapor compression refrigeration system with integrated mechanical sub-cooling system," Applied Energy, Elsevier, vol. 92(C), pages 750-762.
    4. Ala, G. & Orioli, A. & Di Gangi, A., 2019. "Energy and economic analysis of air-to-air heat pumps as an alternative to domestic gas boiler heating systems in the South of Italy," Energy, Elsevier, vol. 173(C), pages 59-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darko Goričanec & Igor Ivanovski & Jurij Krope & Danijela Urbancl, 2020. "The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration," Energies, MDPI, vol. 13(23), pages 1-12, November.
    2. Olaia Eguiarte & Antonio Garrido-Marijuán & Pablo de Agustín-Camacho & Luis del Portillo & Ander Romero-Amorrortu, 2020. "Energy, Environmental and Economic Analysis of Air-to-Air Heat Pumps as an Alternative to Heating Electrification in Europe," Energies, MDPI, vol. 13(15), pages 1-18, August.
    3. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    4. Salimi, Mohammad & Faramarzi, Davoud & Hosseinian, Seyed Hossein & Gharehpetian, Gevork B., 2020. "Replacement of natural gas with electricity to improve seismic service resilience: An application to domestic energy utilities in Iran," Energy, Elsevier, vol. 200(C).
    5. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    6. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    8. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    9. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    10. Carroll, Zane & Couzo, Evan, 2021. "Should North Carolina require more efficient water heaters in homes? A cost-benefit analysis," Energy Policy, Elsevier, vol. 150(C).
    11. Obalanlege, Mustapha A. & Xu, Jingyuan & Markides, Christos N. & Mahmoudi, Yasser, 2022. "Techno-economic analysis of a hybrid photovoltaic-thermal solar-assisted heat pump system for domestic hot water and power generation," Renewable Energy, Elsevier, vol. 196(C), pages 720-736.
    12. Jia, Jie & Lee, W.L. & Cheng, Yuanda & Tian, Qi, 2021. "Can reversible room air-conditioner be used for combined space and domestic hot water heating in subtropical dwellings? Techno-economic evidence from Hong Kong," Energy, Elsevier, vol. 223(C).
    13. Łopata, Stanisław & Ocłoń, Paweł, 2015. "Numerical study of the effect of fouling on local heat transfer conditions in a high-temperature fin-and-tube heat exchanger," Energy, Elsevier, vol. 92(P1), pages 100-116.
    14. Navarro-Esbrí, Joaquín & Fernández-Moreno, Adrián & Mota-Babiloni, Adrián, 2022. "Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization," Energy, Elsevier, vol. 254(PB).
    15. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    16. Juan García-Cuadrado & Andrea Conserva & Juan Aranda & David Zambrana-Vasquez & Tatiana García-Armingol & Gema Millán, 2022. "Response Surface Method to Calculate Energy Savings Associated with Thermal Comfort Improvement in Buildings," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    17. Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
    18. Jordi García-Céspedes & Ignasi Herms & Georgina Arnó & José Juan de Felipe, 2022. "Fifth-Generation District Heating and Cooling Networks Based on Shallow Geothermal Energy: A review and Possible Solutions for Mediterranean Europe," Energies, MDPI, vol. 16(1), pages 1-31, December.
    19. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    20. Hassam ur Rehman & Janne Hirvonen & Juha Jokisalo & Risto Kosonen & Kai Sirén, 2020. "EU Emission Targets of 2050: Costs and CO 2 Emissions Comparison of Three Different Solar and Heat Pump-Based Community-Level District Heating Systems in Nordic Conditions," Energies, MDPI, vol. 13(16), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5856-:d:442442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.