IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp110-121.html
   My bibliography  Save this article

Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution

Author

Listed:
  • Bergamini, Riccardo
  • Jensen, Jonas Kjær
  • Elmegaard, Brian

Abstract

Replacement of fossil fuel-fired boilers for generation of high-temperature water and steam is of paramount importance for reaching a fossil-free economy. Heat pumps could be possible substitutes, but the presently marketed solutions are mainly limited to low-temperature applications. This paper compares the thermodynamic performance of various High-Temperature Heat Pumps (HTHP) based on the vapor compression cycle with natural gas boilers for assessing their technical feasibility and competitiveness as future replacements. Different cycle configurations and natural refrigerants were compared based on the coefficient of system performance and exergetic efficiency. Moreover, the technical feasibility of the most interesting cycles was discussed based on current technologies. The results showed that HTHP are promising substitutes for gas boilers for heat production of temperatures up to 180 °C. In particular, ammonia cycles were preferable for source and sink temperatures lower than 60 °C and 110 °C, respectively, while water was a better-working fluid at higher temperatures. The complete exergy analysis showed different behaviors for various natural refrigerants in the working domain but confirmed the results identified by the energy analysis. In any case, the technological analysis showed that further improvement of compressor technologies is required for making these solutions competitive.

Suggested Citation

  • Bergamini, Riccardo & Jensen, Jonas Kjær & Elmegaard, Brian, 2019. "Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution," Energy, Elsevier, vol. 182(C), pages 110-121.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:110-121
    DOI: 10.1016/j.energy.2019.05.187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darko Goričanec & Igor Ivanovski & Jurij Krope & Danijela Urbancl, 2020. "The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration," Energies, MDPI, vol. 13(23), pages 1-12, November.
    2. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Tian, Yafen & Geng, Yanting & Yuan, Hao & Zhao, Zhaorui, 2022. "Investigation on water injection characteristics and its influence on the performance of twin-screw steam compressor," Energy, Elsevier, vol. 259(C).
    4. Olaia Eguiarte & Antonio Garrido-Marijuán & Pablo de Agustín-Camacho & Luis del Portillo & Ander Romero-Amorrortu, 2020. "Energy, Environmental and Economic Analysis of Air-to-Air Heat Pumps as an Alternative to Heating Electrification in Europe," Energies, MDPI, vol. 13(15), pages 1-18, August.
    5. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
    6. Sung-Hoon Seol & Ahmed A. Serageldin & Oh Kyung Kwon, 2020. "Experimental Research on a Heat Pump Applying a Ball-Circulating Type Automatic Fouling Cleaning System for Fish Farms," Energies, MDPI, vol. 13(22), pages 1-18, November.
    7. Navarro-Esbrí, Joaquín & Fernández-Moreno, Adrián & Mota-Babiloni, Adrián, 2022. "Modelling and evaluation of a high-temperature heat pump two-stage cascade with refrigerant mixtures as a fossil fuel boiler alternative for industry decarbonization," Energy, Elsevier, vol. 254(PB).
    8. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    9. Khosravi, A. & Laukkanen, T. & Vuorinen, V. & Syri, S., 2021. "Waste heat recovery from a data centre and 5G smart poles for low-temperature district heating network," Energy, Elsevier, vol. 218(C).
    10. Cox, Jordan & Belding, Scott & Lowder, Travis, 2022. "Application of a novel heat pump model for estimating economic viability and barriers of heat pumps in dairy applications in the United States," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:110-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.