IDEAS home Printed from
   My bibliography  Save this article

Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system


  • Katz, Jonas
  • Andersen, Frits Møller
  • Morthorst, Poul Erik


Applying a partial equilibrium model of the electricity market we analyse effects of exposing household electricity customers to retail products with variable pricing. Both short-term and long-term effects of exposing customers to hourly spot market prices and a simpler rebate scheme are analysed under scenarios with large shares of wind power in a Danish case study. Our results indicate strategies that could be favourable in ensuring high adoption of products and efficient response by households. We find that simple pricing schemes, though economically less efficient, could become important in an early phase to initialise the development of household demand response. At a later point, when long-term dynamics take effect, a larger effort should be made to shift consumers onto real-time rates, and an increased focus on overall adoption of variable pricing will be required. Another finding is that demand response under variable pricing makes wind power more valuable. These gains in value reduce the need for support, and could be redistributed in further support of demand response.

Suggested Citation

  • Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1602-1616
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kwon, Pil Seok & Østergaard, Poul Alberg, 2012. "Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050," Energy, Elsevier, vol. 46(1), pages 275-282.
    2. Severin Borenstein & Stephen Holland, 2005. "On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices," RAND Journal of Economics, The RAND Corporation, vol. 36(3), pages 469-493, Autumn.
    3. Costello, Ken, 2004. "An Observation on Real-Time Pricing: Why Practice Lags Theory," The Electricity Journal, Elsevier, vol. 17(1), pages 21-25.
    4. Pillai, Jayakrishnan R. & Heussen, Kai & Østergaard, Poul Alberg, 2011. "Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios," Energy, Elsevier, vol. 36(5), pages 3233-3243.
    5. Zareen, N. & Mustafa, M.W. & Sultana, U. & Nadia, R. & Khattak, M.A., 2015. "Optimal real time cost-benefit based demand response with intermittent resources," Energy, Elsevier, vol. 90(P2), pages 1695-1706.
    6. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    7. Cappers, Peter & Mills, Andrew & Goldman, Charles & Wiser, Ryan & Eto, Joseph H., 2012. "An assessment of the role mass market demand response could play in contributing to the management of variable generation integration issues," Energy Policy, Elsevier, vol. 48(C), pages 420-429.
    8. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    9. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    10. Kiviluoma, Juha & Meibom, Peter, 2010. "Influence of wind power, plug-in electric vehicles, and heat storages on power system investments," Energy, Elsevier, vol. 35(3), pages 1244-1255.
    11. Juul, Nina & Meibom, Peter, 2011. "Optimal configuration of an integrated power and transport system," Energy, Elsevier, vol. 36(5), pages 3523-3530.
    12. Faruqui, Ahmad & Hledik, Ryan & Tsoukalis, John, 2009. "The Power of Dynamic Pricing," The Electricity Journal, Elsevier, vol. 22(3), pages 42-56, April.
    13. Torriti, Jacopo & Hassan, Mohamed G. & Leach, Matthew, 2010. "Demand response experience in Europe: Policies, programmes and implementation," Energy, Elsevier, vol. 35(4), pages 1575-1583.
    14. Hirst, Eric, 2002. "The Financial and Physical Insurance Benefits of Price-Responsive Demand," The Electricity Journal, Elsevier, vol. 15(4), pages 66-73, May.
    15. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    16. Kathleen Spees & Lester Lave, 2008. "Impacts of Responsive Load in PJM: Load Shifting and Real Time Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 101-122.
    17. Vickrey, William, 1992. "Efficient pricing of electric power service : Some innovative solutions," Resources and Energy, Elsevier, vol. 14(1-2), pages 157-174, April.
    18. Park, S.C. & Jin, Y.G. & Song, H.Y. & Yoon, Y.T., 2015. "Designing a critical peak pricing scheme for the profit maximization objective considering price responsiveness of customers," Energy, Elsevier, vol. 83(C), pages 521-531.
    19. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    20. Finn, P. & Fitzpatrick, C. & Connolly, D. & Leahy, M. & Relihan, L., 2011. "Facilitation of renewable electricity using price based appliance control in Ireland’s electricity market," Energy, Elsevier, vol. 36(5), pages 2952-2960.
    21. Moghaddam, M. Parsa & Abdollahi, A. & Rashidinejad, M., 2011. "Flexible demand response programs modeling in competitive electricity markets," Applied Energy, Elsevier, vol. 88(9), pages 3257-3269.
    22. Zhao, Jiayun & Kucuksari, Sadik & Mazhari, Esfandyar & Son, Young-Jun, 2013. "Integrated analysis of high-penetration PV and PHEV with energy storage and demand response," Applied Energy, Elsevier, vol. 112(C), pages 35-51.
    23. Rosen, Johannes & Tietze-Stöckinger, Ingela & Rentz, Otto, 2007. "Model-based analysis of effects from large-scale wind power production," Energy, Elsevier, vol. 32(4), pages 575-583.
    24. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    25. Kopsakangas Savolainen, Maria & Svento, Rauli, 2012. "Real-Time Pricing in the Nordic Power markets," Energy Economics, Elsevier, vol. 34(4), pages 1131-1142.
    26. Faruqui, A. & Hajos, A. & Hledik, R.M. & Newell, S.A., 2010. "Fostering economic demand response in the Midwest ISO," Energy, Elsevier, vol. 35(4), pages 1544-1552.
    27. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    28. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    29. Caves, Douglas & Eakin, Kelly & Faruqui, Ahmad, 2000. "Mitigating Price Spikes in Wholesale Markets through Market-Based Pricing in Retail Markets," The Electricity Journal, Elsevier, vol. 13(3), pages 13-23, April.
    30. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    31. Genc, Talat S., 2016. "Measuring demand responses to wholesale electricity prices using market power indices," Energy Economics, Elsevier, vol. 56(C), pages 247-260.
    32. Xu, Fang Yuan & Zhang, Tao & Lai, Loi Lei & Zhou, Hao, 2015. "Shifting Boundary for price-based residential demand response and applications," Applied Energy, Elsevier, vol. 146(C), pages 353-370.
    33. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    34. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    35. He, Xian & Keyaerts, Nico & Azevedo, Isabel & Meeus, Leonardo & Hancher, Leigh & Glachant, Jean-Michel, 2013. "How to engage consumers in demand response: A contract perspective," Utilities Policy, Elsevier, vol. 27(C), pages 108-122.
    36. Broberg, Thomas & Persson, Lars, 2016. "Is our everyday comfort for sale? Preferences for demand management on the electricity market," Energy Economics, Elsevier, vol. 54(C), pages 24-32.
    37. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    38. Dütschke, Elisabeth & Paetz, Alexandra-Gwyn, 2013. "Dynamic electricity pricing—Which programs do consumers prefer?," Energy Policy, Elsevier, vol. 59(C), pages 226-234.
    39. Herter, Karen, 2007. "Residential implementation of critical-peak pricing of electricity," Energy Policy, Elsevier, vol. 35(4), pages 2121-2130, April.
    40. Rodrigues, Renato & Linares, Pedro, 2015. "Electricity load level detail in computational general equilibrium – part II – welfare impacts of a demand response program," Energy Economics, Elsevier, vol. 47(C), pages 52-67.
    41. Mendes, Carla & Soares, Isabel, 2014. "Renewable energies impacting the optimal generation mix: The case of the Iberian Electricity Market," Energy, Elsevier, vol. 69(C), pages 23-33.
    42. Vera, Sonia & Bernal, Felipe & Sauma, Enzo, 2013. "Do distribution companies loose money with an electricity flexible tariff?: A review of the Chilean case," Energy, Elsevier, vol. 55(C), pages 295-303.
    43. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    44. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    45. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    46. Steve A. Fenrick, Lullit Getachew, Chris Ivanov, and Jeff Smith, 2014. "Demand Impact of a Critical Peak Pricing Program: Opt-in and Opt-out Options, Green Attitudes and Other Customer Characteristics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    47. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
    48. Hedegaard, Karsten & Balyk, Olexandr, 2013. "Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks," Energy, Elsevier, vol. 63(C), pages 356-365.
    49. Batas Bjelić, Ilija & Rajaković, Nikola & Ćosić, Boris & Duić, Neven, 2013. "Increasing wind power penetration into the existing Serbian energy system," Energy, Elsevier, vol. 57(C), pages 30-37.
    50. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    51. Jamil, Faisal & Ahmad, Eatzaz, 2011. "Income and price elasticities of electricity demand: Aggregate and sector-wise analyses," Energy Policy, Elsevier, vol. 39(9), pages 5519-5527, September.
    52. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    53. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    54. Walawalkar, Rahul & Blumsack, Seth & Apt, Jay & Fernands, Stephen, 2008. "An economic welfare analysis of demand response in the PJM electricity market," Energy Policy, Elsevier, vol. 36(10), pages 3692-3702, October.
    55. Schreiber, Michael & Wainstein, Martin E. & Hochloff, Patrick & Dargaville, Roger, 2015. "Flexible electricity tariffs: Power and energy price signals designed for a smarter grid," Energy, Elsevier, vol. 93(P2), pages 2568-2581.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    2. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    3. Mahsa Khorram & Pedro Faria & Zita Vale & Carlos Ramos, 2020. "Sequential Tasks Shifting for Participation in Demand Response Programs," Energies, MDPI, Open Access Journal, vol. 13(18), pages 1-16, September.
    4. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
    5. Seier, Maximilian & Schebek, Liselotte, 2017. "Model-based investigation of residual load smoothing through dynamic electricity purchase: The case of wastewater treatment plants in Germany," Applied Energy, Elsevier, vol. 205(C), pages 210-224.
    6. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).
    7. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p3:p:1602-1616. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.