IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v29y2008i2p101-122.html
   My bibliography  Save this article

Impacts of Responsive Load in PJM: Load Shifting and Real Time Pricing

Author

Listed:
  • Kathleen Spees
  • Lester Lave

Abstract

In PJM, 15% of electric generation capacity ran less than 96 hours, 1.1% of the time, over 2006. If retail prices reflected hourly wholesale market prices, customers would shift consumption away from peak hours and installed capacity could drop. We use PJM data to estimate consumer and producer savings from a change toward real-time pricing (RTP) or time-of-use (TOU) pricing. Surprisingly, neither RTP nor TOU has much effect on average price under plausible short-term consumer responses. Consumer plus producer surplus rises 2.8%-4.4% with RTP and 0.6%-1.0% with TOU. Peak capacity savings are seven times larger with RTP. Peak load drops by 10.4%-17.7% with RTP and only 1.1%-2.4% with TOU. Half of all possible customer savings from load shifting are obtained by shifting only 1.7% of all MWh to another time of day, indicating that only the largest customers need be responsive to get the majority of the short-run savings.

Suggested Citation

  • Kathleen Spees & Lester Lave, 2008. "Impacts of Responsive Load in PJM: Load Shifting and Real Time Pricing," The Energy Journal, , vol. 29(2), pages 101-122, April.
  • Handle: RePEc:sae:enejou:v:29:y:2008:i:2:p:101-122
    DOI: 10.5547/ISSN0195-6574-EJ-Vol29-No2-6
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol29-No2-6
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol29-No2-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen P. Holland & Erin T. Mansur, 2006. "The Short-Run Effects of Time-Varying Prices in Competitive Electricity Markets," The Energy Journal, , vol. 27(4), pages 127-156, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    2. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    4. Cleary, Kathryne & Palmer, Karen, 2020. "Encouraging Electrification through Energy Service Subscriptions," RFF Working Paper Series 20-09, Resources for the Future.
    5. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    6. Jacob Mays & Diego Klabjan, 2017. "Optimization of Time-Varying Electricity Rates," The Energy Journal, , vol. 38(5), pages 67-92, September.
    7. L. (Lisa B.) Ryan & Sarah La Monaca & Linda Mastrandrea & Petr Spodniak, 2018. "Harnessing Electricity Retail Tariffs to Support Climate Change Policy," Working Papers 201822, School of Economics, University College Dublin.
    8. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    9. Peña, Juan Ignacio & Rodriguez, Rosa, 2018. "Default supply auctions in electricity markets: Challenges and proposals," Energy Policy, Elsevier, vol. 122(C), pages 142-151.
    10. Boom, Anette & Schwenen, Sebastian, 2012. "Real-time Pricing in Power Markets: Who Gains?," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 66062, Verein für Socialpolitik / German Economic Association.
    11. Shira Horowitz and Lester Lave, 2014. "Equity in Residential Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. repec:osf:thesis:7zprk_v1 is not listed on IDEAS
    13. David P. Byrne & Andrea La Nauze & Leslie A. Martin, 2021. "An Experimental Study of Monthly Electricity Demand (In)elasticity," The Energy Journal, , vol. 42(2), pages 205-222, March.
    14. C. Woo & J. Zarnikau & E. Kollman, 2012. "Exact welfare measurement for double-log demand with partial adjustment," Empirical Economics, Springer, vol. 42(1), pages 171-180, February.
    15. Tim Schittekatte & Dharik Mallapragada & Paul L. Joskow & Richard Schmalensee, 2024. "Electricity Retail Rate Design in a Decarbonizing Economy: An Analysis of Time-of-use and Critical Peak Pricing," The Energy Journal, , vol. 45(3), pages 25-56, May.
    16. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    17. Thomas-Olivier Leautier, 2014. "Is Mandating "Smart Meters" Smart?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    18. Claire Bergaentzlé & Cédric Clastres & Haikel Khalfallah, 2014. "Demand-side management and European environmental and energy goals: an optimal complementary approach," Post-Print halshs-00928678, HAL.
    19. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    20. Nakai, Miwa & von Loessl, Victor & Wetzel, Heike, 2024. "Preferences for dynamic electricity tariffs: A comparison of households in Germany and Japan," Ecological Economics, Elsevier, vol. 223(C).
    21. von Loessl, Victor, 2023. "Smart meter-related data privacy concerns and dynamic electricity tariffs: Evidence from a stated choice experiment," Energy Policy, Elsevier, vol. 180(C).

    More about this item

    Keywords

    Electricity generation; real-time-pricing (RTP); TOU. Load shifting; PJM;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:29:y:2008:i:2:p:101-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.