IDEAS home Printed from https://ideas.repec.org/p/ucn/wpaper/201822.html
   My bibliography  Save this paper

Harnessing Electricity Retail Tariffs to Support Climate Change Policy

Author

Listed:
  • L. (Lisa B.) Ryan
  • Sarah La Monaca
  • Linda Mastrandrea
  • Petr Spodniak

Abstract

Legacy electricity retail tariffs are ill-adapted to future electricity systems and markets, particularly with regard to accommodating the multi-faceted shift toward decarbonisation. We examine how retail tariffs need to be reformed to not only meet the future revenue requirements of energy-suppliers and networks but also to help achieve the environmental objectives of the energy transition. While existing literature has explored the link between retail tariff structure design, wholesale markets and/or network cost recovery, there is less recognition of the impact of tariff structure design on environmental objectives. This paper reviews the demand responsiveness of household customers to electricity prices and implications of retail tariff structure and design for the policy targets of CO2 emissions, energy efficiency, and renewable electricity generation, in addition to electricity system. A review of the literature provides a theoretical basis for price elasticity of demand and electricity retail tariff design, and we explore the environmental implications for future retail tariff design options via examples of various tariff structures in the EU and US. The research links the topics of emissions mitigation policy and market design, and should add empirical insights to the body of academic literature on future electricity markets. It should also be of interest to policy makers wishing to consider retail tariff structures that promote decarbonisation of the electricity system through multiple objectives of improved energy efficiency and increased shares of renewable electricity within future electricity markets.

Suggested Citation

  • L. (Lisa B.) Ryan & Sarah La Monaca & Linda Mastrandrea & Petr Spodniak, 2018. "Harnessing Electricity Retail Tariffs to Support Climate Change Policy," Working Papers 201822, School of Economics, University College Dublin.
  • Handle: RePEc:ucn:wpaper:201822
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10197/9629
    File Function: First version, 2018
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gilbert, Ben & Graff Zivin, Joshua, 2014. "Dynamic salience with intermittent billing: Evidence from smart electricity meters," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 176-190.
    2. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Quantifying the financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 80(C), pages 133-144.
    3. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan H., 2014. "Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering," Energy Policy, Elsevier, vol. 67(C), pages 290-300.
    4. Verbič, Miroslav & Filipović, Sanja & Radovanović, Mirjana, 2017. "Electricity prices and energy intensity in Europe," Utilities Policy, Elsevier, vol. 47(C), pages 58-68.
    5. Finenko, Anton & Cheah, Lynette, 2016. "Temporal CO2 emissions associated with electricity generation: Case study of Singapore," Energy Policy, Elsevier, vol. 93(C), pages 70-79.
    6. Rapson, David, 2014. "Durable goods and long-run electricity demand: Evidence from air conditioner purchase behavior," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 141-160.
    7. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    8. Cosmo, Valeria Di & O’Hora, Denis, 2017. "Nudging electricity consumption using TOU pricing and feedback: evidence from Irish households," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 1-14.
    9. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    10. Stoll, Pia & Brandt, Nils & Nordström, Lars, 2014. "Including dynamic CO2 intensity with demand response," Energy Policy, Elsevier, vol. 65(C), pages 490-500.
    11. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Regulatory and ratemaking approaches to mitigate financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 85(C), pages 115-125.
    12. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    13. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    14. Rodri­guez Ortega, Mari­a Pi­a & Pérez-Arriaga, J. Ignacio & Abbad, Juan Rivier & González, Jesús Peco, 2008. "Distribution network tariffs: A closed question?," Energy Policy, Elsevier, vol. 36(5), pages 1712-1725, May.
    15. Stephen P. Holland & Erin T. Mansur, 2006. "The Short-Run Effects of Time-Varying Prices in Competitive Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 127-156.
    16. Janko, Samantha A. & Arnold, Michael R. & Johnson, Nathan G., 2016. "Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market," Applied Energy, Elsevier, vol. 180(C), pages 37-51.
    17. S. Borenstein, 2013. "Effective and Equitable Adoption of Opt-In Residential Dynamic Electricity Pricing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(2), pages 127-160, March.
    18. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    19. Picciariello, Angela & Vergara, Claudio & Reneses, Javier & Frías, Pablo & Söder, Lennart, 2015. "Electricity distribution tariffs and distributed generation: Quantifying cross-subsidies from consumers to prosumers," Utilities Policy, Elsevier, vol. 37(C), pages 23-33.
    20. Cai, Desmond W.H. & Adlakha, Sachin & Low, Steven H. & De Martini, Paul & Mani Chandy, K., 2013. "Impact of residential PV adoption on Retail Electricity Rates," Energy Policy, Elsevier, vol. 62(C), pages 830-843.
    21. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    2. Kubli, Merla, 2018. "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers," Energy Policy, Elsevier, vol. 114(C), pages 173-188.
    3. Nikolaidis, Alexandros I. & Charalambous, Charalambos A., 2017. "Hidden financial implications of the net energy metering practice in an isolated power system: Critical review and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 706-717.
    4. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    5. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    6. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    7. Miguel Manuel de Villena & Raphael Fonteneau & Axel Gautier & Damien Ernst, 2019. "Evaluating the Evolution of Distribution Networks under Different Regulatory Frameworks with Multi-Agent Modelling," Energies, MDPI, Open Access Journal, vol. 12(7), pages 1-15, March.
    8. Jessoe, Katrina & Rapson, David & Smith, Jeremy B., 2014. "Towards understanding the role of price in residential electricity choices: Evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 191-208.
    9. Castaneda, Monica & Zapata, Sebastian & Cherni, Judith & Aristizabal, Andres J. & Dyner, Isaac, 2020. "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renewable Energy, Elsevier, vol. 155(C), pages 1432-1443.
    10. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    11. Peter Cappers & Andrew Satchwell & Will Gorman & Javier Reneses, 2019. "Financial Impacts of Net-Metered Distributed PV on a Prototypical Western Utility’s Shareholders and Ratepayers," Energies, MDPI, Open Access Journal, vol. 12(24), pages 1-19, December.
    12. Johnson, Erik & Beppler, Ross & Blackburn, Chris & Staver, Benjamin & Brown, Marilyn & Matisoff, Daniel, 2017. "Peak shifting and cross-class subsidization: The impacts of solar PV on changes in electricity costs," Energy Policy, Elsevier, vol. 106(C), pages 436-444.
    13. Solano, J.C. & Brito, M.C. & Caamaño-Martín, E., 2018. "Impact of fixed charges on the viability of self-consumption photovoltaics," Energy Policy, Elsevier, vol. 122(C), pages 322-331.
    14. Castaneda, Monica & Franco, Carlos J. & Dyner, Isaac, 2017. "Evaluating the effect of technology transformation on the electricity utility industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 341-351.
    15. Koichiro Ito, 2015. "Asymmetric Incentives in Subsidies: Evidence from a Large-Scale Electricity Rebate Program," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 209-237, August.
    16. Satchwell, Andrew & Cappers, Peter & Goldman, Charles, 2018. "Customer bill impacts of energy efficiency and net-metered photovoltaic system investments," Utilities Policy, Elsevier, vol. 50(C), pages 144-152.
    17. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    18. Jacobsen, Grant D., 2015. "Do energy prices influence investment in energy efficiency? Evidence from energy star appliances," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 94-106.
    19. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    20. Koumparou, Ioannis & Christoforidis, Georgios C. & Efthymiou, Venizelos & Papagiannis, Grigoris K. & Georghiou, George E., 2017. "Configuring residential PV net-metering policies – A focus on the Mediterranean region," Renewable Energy, Elsevier, vol. 113(C), pages 795-812.

    More about this item

    Keywords

    Electricity retail tariffs; Electricity prices; Energy policy; Decarbonisation of electricity;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucn:wpaper:201822. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/educdie.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicolas Clifton (email available below). General contact details of provider: https://edirc.repec.org/data/educdie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.