IDEAS home Printed from
   My bibliography  Save this article

Real-Time Pricing in the Nordic Power markets


  • Kopsakangas Savolainen, Maria
  • Svento, Rauli


In this paper we study the potential effects of Real-Time Pricing (RTP) of electricity on the need for long-run capacities in the Nordic Power markets. A characteristic of the Nordic Power market is the large variety of production technologies, of which hydro and nuclear power are capacity constrained. We analyze the impact of RTP on: the need for total, peak and midmerit capacities; total demand; prices; peak demand hours; and economic welfare. We have also studied whether the results of RTP are sensitive to the simultaneous implementation of tradable emission permits. We find that RTP diminishes the need for total capacity even with inelastic demand. Our results show that even with modest assumptions related to RTP participation, the annual midmerit and peaker capacity efficiency savings amount to 97million Euros, which are around 6% of their total annual investment costs. The price of the peak demand hour clearly diminishes as the share of the RTP customers increases or demand becomes more price elastic. We compare RTP and tradable emission permits as two separate instruments in reaching energy use efficiencies and show how these two instruments must be seen as complementary and not as substitutable instruments. We show how RTP and tradable emission permits have a positive correlation in promoting market access of renewable energy sources. We find that welfare effects of the implementation of RTP are positive.

Suggested Citation

  • Kopsakangas Savolainen, Maria & Svento, Rauli, 2012. "Real-Time Pricing in the Nordic Power markets," Energy Economics, Elsevier, vol. 34(4), pages 1131-1142.
  • Handle: RePEc:eee:eneeco:v:34:y:2012:i:4:p:1131-1142
    DOI: 10.1016/j.eneco.2011.10.006

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Herriges, Joseph A, et al, 1993. "The Response of Industrial Customers to Electric Rates Based upon Dynamic Marginal Costs," The Review of Economics and Statistics, MIT Press, vol. 75(3), pages 446-454, August.
    2. Severin Borenstein & Stephen Holland, 2005. "On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices," RAND Journal of Economics, The RAND Corporation, vol. 36(3), pages 469-493, Autumn.
    3. Severin Borenstein, 2007. "Customer Risk from Real-Time Retail Electricity Pricing: Bill Volatility and Hedgability," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 111-130.
    4. Paul L. Joskow & Edward Kohn, 2002. "A Quantitative Analysis of Pricing Behavior in California's Wholesale Electricity Market During Summer 2000," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-35.
    5. Faruqui, Ahmad & Hledik, Ryan & Tsoukalis, John, 2009. "The Power of Dynamic Pricing," The Electricity Journal, Elsevier, vol. 22(3), pages 42-56, April.
    6. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    7. Severin Borenstein, 2007. "Wealth Transfers Among Large Customers from Implementing Real-Time Retail Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 131-150.
    8. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    9. Borenstein, Severin & Bushnell, James, 1999. "An Empirical Analysis of the Potential for Market Power in California's Electricity Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 47(3), pages 285-323, September.
    10. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    11. Johnsen, Tor Arnt, 2001. "Demand, generation and price in the Norwegian market for electric power," Energy Economics, Elsevier, vol. 23(3), pages 227-251, May.
    12. Peter M. Schwarz & Thomas N. Taylor & Matthew Birmingham & Shana L. Dardan, 2002. "Industrial Response to Electricity Real-Time Prices: Short Run and Long Run," Economic Inquiry, Western Economic Association International, vol. 40(4), pages 597-610, October.
    13. Tol, Richard S.J., 2007. "Europe's long-term climate target: A critical evaluation," Energy Policy, Elsevier, vol. 35(1), pages 424-432, January.
    14. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    15. Torstein Bye & Petter Vegard Hansen, 2008. "How do Spot prices affect aggregate electricity demand?," Discussion Papers 527, Statistics Norway, Research Department.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:appene:v:195:y:2017:i:c:p:1023-1037 is not listed on IDEAS
    2. Faber, Isaac & Lane, William & Pak, Wayne & Prakel, Mary & Rocha, Cheyne & Farr, John V., 2014. "Micro-energy markets: The role of a consumer preference pricing strategy on microgrid energy investment," Energy, Elsevier, vol. 74(C), pages 567-575.
    3. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Koski, Heli & Melkas, Helinä & Mäntylä, Martti & Pieters, Roel & Svento, Rauli & Särkikoski, Tuomo & Talja, Heli & Hyyppä, Juha & Kaartinen, Harri & Hyyppä, Hannu & Matikainen, Leena, 2016. "Technology Disruptions as Enablers of Organizational and Social Innovation in Digitalized Environment," ETLA Working Papers 45, The Research Institute of the Finnish Economy.
    5. Florian Kuhnlenz & Pedro H. J. Nardelli & Santtu Karhinen & Rauli Svento, 2017. "Implementing Flexible Demand: Real-time Price vs. Market Integration," Papers 1709.02667,, revised Feb 2018.
    6. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    7. repec:eee:enepol:v:115:y:2018:i:c:p:418-425 is not listed on IDEAS
    8. Vesterberg, Mattias, 2016. "The hourly income elasticity of electricity," Energy Economics, Elsevier, vol. 59(C), pages 188-197.
    9. Pechan, Anna & Eisenack, Klaus, 2014. "The impact of heat waves on electricity spot markets," Energy Economics, Elsevier, vol. 43(C), pages 63-71.
    10. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    11. Vesterberg, Mattias, 2017. "Power to the people: Electricity demand and household behavior," Umeå Economic Studies 942, Umeå University, Department of Economics.
    12. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.

    More about this item


    Real-Time Pricing; Nordic Power markets; Capacity investments; Emission permit trade;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:4:p:1131-1142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.