IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v102y2021ics0140988321003522.html
   My bibliography  Save this article

Peak and off-peak demand for electricity: Is there a potential for load shifting?

Author

Listed:
  • Brännlund, Runar
  • Vesterberg, Mattias

Abstract

In this paper, we explore whether there is a potential for shifting load between different times of the days, i.e., between peak and off-peak hours. In particular, we explore whether the fact that electricity is a necessity to modern life puts restrictions on the possibilities for load shifting. To do that we provide a structural framework for peak and off-peak electricity demand, where households are assumed to have Stone-Geary utility functions with subsistence levels for electricity demand that varies within the day, and that depends on household characteristics and temperature. As an empirical illustration, we fit our model to Swedish data on residential electricity usage at the sub-daily level. Our results indicate that the potential to shift load from peak to off peak is limited. One reason for this is that the subsistence levels are larger during peak than off-peak, implying that households assign a high value on electricity during peak time, relative to off-peak time. Overall, the results have important policy implications, not the least with respect to effects of real time pricing, as it suggests that there are limits to households' price responsiveness.

Suggested Citation

  • Brännlund, Runar & Vesterberg, Mattias, 2021. "Peak and off-peak demand for electricity: Is there a potential for load shifting?," Energy Economics, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003522
    DOI: 10.1016/j.eneco.2021.105466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988321003522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atkinson, Scott E., 1979. "Responsiveness to time-of-day electricity pricing : First empirical results," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 79-95, January.
    2. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    3. Simona Bigerna and Carlo Andrea Bollino, 2014. "Electricity Demand in Wholesale Italian Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    5. Poyer, David A. & Henderson, Lenneal & Teotia, Arvind P. S., 1997. "Residential energy consumption across different population groups: comparative analysis for Latino and non-Latino households in USA," Energy Economics, Elsevier, vol. 19(4), pages 445-463, October.
    6. Roberto Martinez-Espineira & Celine Nauges, 2004. "Is all domestic water consumption sensitive to price control?," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1697-1703.
    7. Broberg, Thomas & Persson, Lars, 2016. "Is our everyday comfort for sale? Preferences for demand management on the electricity market," Energy Economics, Elsevier, vol. 54(C), pages 24-32.
    8. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    9. Aubin, Christophe, et al, 1995. "Real-Time Pricing of Electricity for Residential Customers: Econometric Analysis of an Experiment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(S), pages 171-191, Suppl. De.
    10. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    11. Amin Karimu, Chandra Kiran B.Krishnamurthy, and Mattias Vesterberg, 2022. "Understanding Hourly Electricity Demand: Implications for Load, Welfare and Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. R. C. Geary, 1950. "A Note on "A Constant-Utility Index of the Cost of Living"," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 18(1), pages 65-66.
    13. Berg, Sandford V. & Savvides, Andreas, 1983. "The theory of maximum kW demand charges for electricity," Energy Economics, Elsevier, vol. 5(4), pages 258-266, October.
    14. Severin Borenstein & Lucas W. Davis, 2012. "The Equity and Efficiency of Two-Part Tariffs in U.S. Natural Gas Markets," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 75-128.
    15. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    16. Filippini, Massimo, 1995. "Electricity demand by time of use An application of the household AIDS model," Energy Economics, Elsevier, vol. 17(3), pages 197-204, July.
    17. Krishnamurthy, Chandra Kiran B. & Kriström, Bengt, 2015. "A cross-country analysis of residential electricity demand in 11 OECD-countries," Resource and Energy Economics, Elsevier, vol. 39(C), pages 68-88.
    18. Pollak, Robert A & Wales, Terence J, 1981. "Demographic Variables in Demand Analysis," Econometrica, Econometric Society, vol. 49(6), pages 1533-1551, November.
    19. Mountain, Dean C & Lawson, Evelyn L, 1992. "A Disaggregated Nonhomothetic Modeling of Responsiveness to Residential Time-of-Use Electricity Rates," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 181-207, February.
    20. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    21. Kopsakangas Savolainen, Maria & Svento, Rauli, 2012. "Real-Time Pricing in the Nordic Power markets," Energy Economics, Elsevier, vol. 34(4), pages 1131-1142.
    22. Sylvestre Gaudin & Ronald C. Griffin & Robin C. Sickles, 2001. "Demand Specification for Municipal Water Management: Evaluation of the Stone-Geary Form," Land Economics, University of Wisconsin Press, vol. 77(3), pages 399-422.
    23. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    24. Caves, Douglas W. & Christensen, Laurits R., 1980. "Econometric analysis of residential time-of-use electricity pricing experiments," Journal of Econometrics, Elsevier, vol. 14(3), pages 287-306, December.
    25. Vesterberg, Mattias, 2018. "The effect of price on electricity contract choice," Energy Economics, Elsevier, vol. 69(C), pages 59-70.
    26. Nesbakken, Runa, 1999. "Price sensitivity of residential energy consumption in Norway," Energy Economics, Elsevier, vol. 21(6), pages 493-515, December.
    27. Allcott, Hunt, 2011. "Rethinking real-time electricity pricing," Resource and Energy Economics, Elsevier, vol. 33(4), pages 820-842.
    28. Koichiro Ito & Takanori Ida & Makoto Tanaka, 2018. "Moral Suasion and Economic Incentives: Field Experimental Evidence from Energy Demand," American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 240-267, February.
    29. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James W. Mjelde & Kannika Duangnate, 2023. "Overview of Committed Quantities in Commodity Demand Analysis with a Focus on Energy," Energies, MDPI, vol. 16(11), pages 1-17, May.
    2. El Gohary, Fouad & Stikvoort, Britt & Bartusch, Cajsa, 2023. "Evaluating demand charges as instruments for managing peak-demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vesterberg, Mattias, 2017. "Power to the people: Electricity demand and household behavior," Umeå Economic Studies 942, Umeå University, Department of Economics.
    2. Vesterberg, Mattias, 2016. "The hourly income elasticity of electricity," Energy Economics, Elsevier, vol. 59(C), pages 188-197.
    3. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    4. Lanot, Gauthier & Vesterberg, Mattias, 2021. "The price elasticity of electricity demand when marginal incentives are very large," Energy Economics, Elsevier, vol. 104(C).
    5. Vesterberg, Mattias, 2017. "Heterogeneity in price responsiveness of electricity: Contract choice and the role of media coverage," Umeå Economic Studies 940, Umeå University, Department of Economics.
    6. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    7. Tarek Atalla & Simona Bigerna & Carlo Andrea Bollino, 2018. "Energy demand elasticities and weather worldwide," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(1), pages 207-237, April.
    8. James W. Mjelde & Kannika Duangnate, 2023. "Overview of Committed Quantities in Commodity Demand Analysis with a Focus on Energy," Energies, MDPI, vol. 16(11), pages 1-17, May.
    9. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    10. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    11. Pretto, Madeline, 2021. "Tail-risk Comprehension and Protection in Real-time Electricity Pricing : Experimental Evidence," Warwick-Monash Economics Student Papers 25, Warwick Monash Economics Student Papers.
    12. Simona Bigerna and Carlo Andrea Bollino, 2015. "A System Of Hourly Demand in the Italian Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    14. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    15. Daruwala, Farhad & Denton, Frank T. & Mountain, Dean C., 2020. "One size may not fit all: Welfare benefits and cost reductions with optional differentiated household electricity rates," Resource and Energy Economics, Elsevier, vol. 61(C).
    16. Jing Liang & Yueming Qiu & Bo Xing, 2021. "Social Versus Private Benefits of Energy Efficiency Under Time-of-Use and Increasing Block Pricing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 43-75, January.
    17. Kayo Murakami & Hideki Shimada & Yoshiaki Ushifusa & Takanori Ida, 2022. "Heterogeneous Treatment Effects Of Nudge And Rebate: Causal Machine Learning In A Field Experiment On Electricity Conservation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1779-1803, November.
    18. Jessoe, Katrina & Rapson, David & Smith, Jeremy B., 2014. "Towards understanding the role of price in residential electricity choices: Evidence from a natural experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 191-208.
    19. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    20. Laura Mørch Andersen & Lars Gårn Hansen & Carsten Lynge Jensen & Frank A. Wolak, 2019. "Can Incentives to Increase Electricity Use Reduce the Cost of Integrating Renewable Resources," NBER Working Papers 25615, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.