IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p2568-2581.html
   My bibliography  Save this article

Flexible electricity tariffs: Power and energy price signals designed for a smarter grid

Author

Listed:
  • Schreiber, Michael
  • Wainstein, Martin E.
  • Hochloff, Patrick
  • Dargaville, Roger

Abstract

Renewable energy is increasingly replacing carbon-based technologies worldwide in electricity networks. This increases the challenge of balancing intermittent generation with demand fluctuation. DR (Demand response) is recognized as a way to address this by adapting consumption to supply patterns. By using DR technology, grid withdrawal of DSM (demand side management) devices such as heat pumps, electric vehicles or stationary batteries can be temporally shifted. Yet, the development of an accurate control and market design is still one of the greatest remaining DR challenges.

Suggested Citation

  • Schreiber, Michael & Wainstein, Martin E. & Hochloff, Patrick & Dargaville, Roger, 2015. "Flexible electricity tariffs: Power and energy price signals designed for a smarter grid," Energy, Elsevier, vol. 93(P2), pages 2568-2581.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2568-2581
    DOI: 10.1016/j.energy.2015.10.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215014358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    2. Dupont, B. & Dietrich, K. & De Jonghe, C. & Ramos, A. & Belmans, R., 2014. "Impact of residential demand response on power system operation: A Belgian case study," Applied Energy, Elsevier, vol. 122(C), pages 1-10.
    3. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    4. Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
    5. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    6. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    7. Herter, Karen & McAuliffe, Patrick & Rosenfeld, Arthur, 2007. "An exploratory analysis of California residential customer response to critical peak pricing of electricity," Energy, Elsevier, vol. 32(1), pages 25-34.
    8. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    9. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    10. Hu, Zheng & Kim, Jin-ho & Wang, Jianhui & Byrne, John, 2015. "Review of dynamic pricing programs in the U.S. and Europe: Status quo and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 743-751.
    11. Higgins, Andrew & Grozev, George & Ren, Zhengen & Garner, Stephen & Walden, Glenn & Taylor, Michelle, 2014. "Modelling future uptake of distributed energy resources under alternative tariff structures," Energy, Elsevier, vol. 74(C), pages 455-463.
    12. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    2. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    3. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    4. Tayal, Dev & Evers, Uwana, 2018. "Consumer preferences and electricity pricing reform in Western Australia," Utilities Policy, Elsevier, vol. 54(C), pages 115-124.
    5. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    6. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    7. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    8. Schibuola, Luigi & Scarpa, Massimiliano & Tambani, Chiara, 2017. "Influence of charge control strategies on electricity import/export in battery-supported photovoltaic systems," Renewable Energy, Elsevier, vol. 113(C), pages 312-328.
    9. Roth, Lucas & Lowitzsch, Jens & Yildiz, Özgür & Hashani, Alban, 2016. "The impact of (co-) ownership of renewable energy production facilities on demand flexibility," MPRA Paper 73562, University Library of Munich, Germany.
    10. Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
    11. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "Steering the adoption of battery storage through electricity tariff design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 125-139.
    12. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    13. Bergaentzlé, Claire & Jensen, Ida Græsted & Skytte, Klaus & Olsen, Ole Jess, 2019. "Electricity grid tariffs as a tool for flexible energy systems: A Danish case study," Energy Policy, Elsevier, vol. 126(C), pages 12-21.
    14. Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2016. "Impacts of electricity grid tariffs on flexible use of electricity to heat generation," Energy, Elsevier, vol. 115(P3), pages 1679-1687.
    15. Kraan, O. & Kramer, G.J. & Nikolic, I., 2018. "Investment in the future electricity system - An agent-based modelling approach," Energy, Elsevier, vol. 151(C), pages 569-580.
    16. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "The impact of policy on microgrid economics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3111-3119.
    17. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
    18. Stawska, Anna & Romero, Natalia & de Weerdt, Mathijs & Verzijlbergh, Remco, 2021. "Demand response: For congestion management or for grid balancing?," Energy Policy, Elsevier, vol. 148(PA).
    19. Thakur, Jagruti & Chakraborty, Basab, 2018. "Impact of increased solar penetration on bill savings of net metered residential consumers in India," Energy, Elsevier, vol. 162(C), pages 776-786.
    20. Papaefthymiou, Georgios & Haesen, Edwin & Sach, Thobias, 2018. "Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems," Renewable Energy, Elsevier, vol. 127(C), pages 1026-1035.
    21. Lucas Roth & Özgür Yildiz & Jens Lowitzsch, 2021. "An Empirical Approach to Differences in Flexible Electricity Consumption Behaviour of Urban and Rural Populations—Lessons Learned in Germany," Sustainability, MDPI, vol. 13(16), pages 1-31, August.
    22. Michael Maphosa & Patrick Mabuza, 2017. "The Trade-Offs Between Pro-Poor and Cost-Reflective Tariffs in South Africa: A Regulatory Perspective," Journal of Economics and Behavioral Studies, AMH International, vol. 8(6), pages 206-215.
    23. Tobias Rösch & Peter Treffinger & Barbara Koch, 2021. "Regional Flexibility Markets—Solutions to the European Energy Distribution Grid—A Systematic Review and Research Agenda," Energies, MDPI, vol. 14(9), pages 1-32, April.
    24. Nomaguchi, Yutaka & Tanaka, Hiroki & Sakakibara, Akiyuki & Fujita, Kikuo & Kishita, Yusuke & Hara, Keishiro & Uwasu, Michinori, 2017. "Integrated planning of low-voltage power grids and subsidies toward a distributed generation system – Case study of the diffusion of photovoltaics in a Japanese dormitory town," Energy, Elsevier, vol. 140(P1), pages 779-793.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    2. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    3. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
    4. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    5. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    6. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    7. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    8. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    9. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    10. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    11. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    12. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    13. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    14. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    15. Jun Dong & Rong Li & Hui Huang, 2018. "Performance Evaluation of Residential Demand Response Based on a Modified Fuzzy VIKOR and Scalable Computing Method," Energies, MDPI, vol. 11(5), pages 1-27, April.
    16. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
    17. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    18. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    19. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    20. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2568-2581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.