IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp45-54.html
   My bibliography  Save this article

Load commitment in a smart home

Author

Listed:
  • Rastegar, Mohammad
  • Fotuhi-Firuzabad, Mahmud
  • Aminifar, Farrokh

Abstract

Although demand response (DR) potentially brings miscellaneous advantages, it is currently faced with challenges in its implementation due to customers’ difficulty in manually responding to the time-varying prices. This paper presents an optimal and automatic residential load commitment (LC) framework to achieve the household minimum payment. Problem decision variables are the operating status of responsive appliances and charging/discharging cycles of battery storage and plug-in hybrid electric vehicles (PHEVs). Storage capability in residential centers provide the customers with this opportunity to not only supply the local demand during the high price hours but also sell the energy back to the utility. The optimization-based LC shifts the responsive loads to inexpensive periods which rationally coincide with the valley of consumption profile. As a matter of fact, the peak to average ratio (PAR) of the load profile would likely decrease which, although might be unappealing to the customers, is desirable from the utility viewpoint. Direct load control (DLC) is also modeled by using the proposed LC approach. In the DLC program, a customer receives a rather fair tariff allowing the utility to control a set of specific devices. Customer inconvenience is considered as the factor restricting a complete DLC realization. Numerical simulations are conducted to illustrate the proposed notions and to verify the efficiency of the developed model.

Suggested Citation

  • Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:45-54
    DOI: 10.1016/j.apenergy.2012.01.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ericson, Torgeir, 2011. "Households' self-selection of dynamic electricity tariffs," Applied Energy, Elsevier, vol. 88(7), pages 2541-2547, July.
    2. Middelberg, Arno & Zhang, Jiangfeng & Xia, Xiaohua, 2009. "An optimal control model for load shifting - With application in the energy management of a colliery," Applied Energy, Elsevier, vol. 86(7-8), pages 1266-1273, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
    2. S.R. Patterson & E. Kozan & P. Hyland, 2016. "An integrated model of an open-pit coal mine: improving energy efficiency decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4213-4227, July.
    3. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    4. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    5. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    6. Zhu, Kai & Li, Xueqiang & Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2018. "Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses," Applied Energy, Elsevier, vol. 216(C), pages 348-357.
    7. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    8. Schlereth, Christian & Skiera, Bernd & Schulz, Fabian, 2018. "Why do consumers prefer static instead of dynamic pricing plans? An empirical study for a better understanding of the low preferences for time-variant pricing plans," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1165-1179.
    9. Srivastava, Aman & Van Passel, Steven & Kessels, Roselinde & Valkering, Pieter & Laes, Erik, 2020. "Reducing winter peaks in electricity consumption: A choice experiment to structure demand response programs," Energy Policy, Elsevier, vol. 137(C).
    10. Tebello Mathaba & Xiaohua Xia, 2015. "A Parametric Energy Model for Energy Management of Long Belt Conveyors," Energies, MDPI, vol. 8(12), pages 1-19, December.
    11. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    12. Vesterberg, Mattias, 2018. "The effect of price on electricity contract choice," Energy Economics, Elsevier, vol. 69(C), pages 59-70.
    13. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    14. Tsai, Men-Shen & Lin, Yu-Hsiu, 2012. "Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation," Applied Energy, Elsevier, vol. 96(C), pages 55-73.
    15. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    16. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    17. Dashti, Reza & Afsharnia, Saeed & Ghasemi, Hassan, 2010. "A new long term load management model for asset governance of electrical distribution systems," Applied Energy, Elsevier, vol. 87(12), pages 3661-3667, December.
    18. Burns, Kelly & Mountain, Bruce, 2021. "Do households respond to Time-Of-Use tariffs? Evidence from Australia," Energy Economics, Elsevier, vol. 95(C).
    19. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    20. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:45-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.