IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp1364-1378.html
   My bibliography  Save this article

A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment

Author

Listed:
  • Jin, Hongyang
  • Li, Zhengshuo
  • Sun, Hongbin
  • Guo, Qinglai
  • Chen, Runze
  • Wang, Bin

Abstract

Incorporating energy-intensive enterprises (EIEs) in power system unit commitments is beneficial for both power systems and EIEs. However, power systems and EIEs are typically operated by different entities, making it impractical to incorporate a full EIE model in the unit commitment because of the increasing model dimensions and consequent calculation efficiency and privacy issues. Therefore, a robust aggregate model (RAM) of the EIE is developed in this paper to simplify the detailed EIE model as a conventional generator; which ensures the robustness of the simplified model, i.e., all possible dispatch signals from system operators can be realized by EIEs. The flexibility of EIEs and the corresponding cost are also retained in the RAM. To obtain the technical parameters of the RAM, a two-stage robust problem is developed, and a modified column-constraint-generation solution method is proposed. In addition, the economic parameters of the RAM are obtained based on the upper convex hull of an EIE’s maximum cost under given dispatch signals. With the proposed RAM, the dimensions and calculation time of the unit commitment incorporating EIEs are drastically decreased, and the EIE can reduce production costs while the system operator can reduce operational costs and increase wind integration.

Suggested Citation

  • Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:1364-1378
    DOI: 10.1016/j.apenergy.2017.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nezamoddini, Nasim & Wang, Yong, 2017. "Real-time electricity pricing for industrial customers: Survey and case studies in the United States," Applied Energy, Elsevier, vol. 195(C), pages 1023-1037.
    2. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
    3. Ayón, X. & Gruber, J.K. & Hayes, B.P. & Usaola, J. & Prodanović, M., 2017. "An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands," Applied Energy, Elsevier, vol. 198(C), pages 1-11.
    4. Zhang, X.Y. & Huang, G.H. & Zhu, H. & Li, Y.P., 2017. "A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties," Energy, Elsevier, vol. 123(C), pages 664-676.
    5. Chen, Runze & Sun, Hongbin & Guo, Qinglai & Jin, Hongyang & Wu, Wenchuan & Zhang, Boming, 2015. "Profit-seeking energy-intensive enterprises participating in power system scheduling: Model and mechanism," Applied Energy, Elsevier, vol. 158(C), pages 263-274.
    6. Jiang, Bo & Farid, Amro M. & Youcef-Toumi, Kamal, 2015. "Demand side management in a day-ahead wholesale market: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 156(C), pages 642-654.
    7. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    8. Mohan, Vivek & Singh, Jai Govind & Ongsakul, Weerakorn, 2015. "An efficient two stage stochastic optimal energy and reserve management in a microgrid," Applied Energy, Elsevier, vol. 160(C), pages 28-38.
    9. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    10. Yuan-Zhang Sun & Jin Lin & Yong-Hua Song & Jian Xu & Xiao-Ming Li & Jian-Xun Dong, 2012. "An Industrial System Powered by Wind and Coal for Aluminum Production: A Case Study of Technical Demonstration and Economic Feasibility," Energies, MDPI, vol. 5(11), pages 1-26, November.
    11. Park, Heejung & Baldick, Ross, 2016. "Multi-year stochastic generation capacity expansion planning under environmental energy policy," Applied Energy, Elsevier, vol. 183(C), pages 737-745.
    12. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    13. Middelberg, Arno & Zhang, Jiangfeng & Xia, Xiaohua, 2009. "An optimal control model for load shifting - With application in the energy management of a colliery," Applied Energy, Elsevier, vol. 86(7-8), pages 1266-1273, July.
    14. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.
    15. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2017. "Feasible region method based integrated heat and electricity dispatch considering building thermal inertia," Applied Energy, Elsevier, vol. 192(C), pages 395-407.
    16. Ashok, S. & Banerjee, R., 2000. "Load-management applications for the industrial sector," Applied Energy, Elsevier, vol. 66(2), pages 105-111, June.
    17. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    2. Liao, Shiwu & Yao, Wei & Han, Xingning & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & He, Haibo, 2019. "An improved two-stage optimization for network and load recovery during power system restoration," Applied Energy, Elsevier, vol. 249(C), pages 265-275.
    3. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    4. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    5. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    6. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    7. Qiu, Haifeng & Gu, Wei & Pan, Jing & Xu, Bin & Xu, Yinliang & Fan, Miao & Wu, Zhi, 2018. "Multi-interval-uncertainty constrained robust dispatch for AC/DC hybrid microgrids with dynamic energy storage degradation," Applied Energy, Elsevier, vol. 228(C), pages 205-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
    2. Chen, Runze & Sun, Hongbin & Guo, Qinglai & Jin, Hongyang & Wu, Wenchuan & Zhang, Boming, 2015. "Profit-seeking energy-intensive enterprises participating in power system scheduling: Model and mechanism," Applied Energy, Elsevier, vol. 158(C), pages 263-274.
    3. Bejan, Ioana & Jensen, Carsten Lynge & Andersen, Laura M. & Hansen, Lars Gårn, 2021. "Inducing flexibility of household electricity demand: The overlooked costs of reacting to dynamic incentives," Applied Energy, Elsevier, vol. 284(C).
    4. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    5. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    6. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    7. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    8. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    9. Dashti, Reza & Afsharnia, Saeed & Ghasemi, Hassan, 2010. "A new long term load management model for asset governance of electrical distribution systems," Applied Energy, Elsevier, vol. 87(12), pages 3661-3667, December.
    10. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    11. Jiang, Bo & Muzhikyan, Aramazd & Farid, Amro M. & Youcef-Toumi, Kamal, 2017. "Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches," Applied Energy, Elsevier, vol. 187(C), pages 833-846.
    12. Nezamoddini, Nasim & Wang, Yong, 2017. "Real-time electricity pricing for industrial customers: Survey and case studies in the United States," Applied Energy, Elsevier, vol. 195(C), pages 1023-1037.
    13. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    14. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    15. Mazidi, Mohammadreza & Monsef, Hassan & Siano, Pierluigi, 2016. "Robust day-ahead scheduling of smart distribution networks considering demand response programs," Applied Energy, Elsevier, vol. 178(C), pages 929-942.
    16. van Staden, Adam Jacobus & Zhang, Jiangfeng & Xia, Xiaohua, 2011. "A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges," Applied Energy, Elsevier, vol. 88(12), pages 4785-4794.
    17. Saxena, Harshit & Aponte, Omar & McConky, Katie T., 2019. "A hybrid machine learning model for forecasting a billing period’s peak electric load days," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1288-1303.
    18. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    19. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
    20. Moreno, Blanca & García-Álvarez, María Teresa & Ramos, Carmen & Fernández-Vázquez, Esteban, 2014. "A General Maximum Entropy Econometric approach to model industrial electricity prices in Spain: A challenge for the competitiveness," Applied Energy, Elsevier, vol. 135(C), pages 815-824.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:1364-1378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.