IDEAS home Printed from
   My bibliography  Save this article

Optimal real time cost-benefit based demand response with intermittent resources


  • Zareen, N.
  • Mustafa, M.W.
  • Sultana, U.
  • Nadia, R.
  • Khattak, M.A.


Ever-increasing price of conventional energy resources and related environmental concern enforced to explore alternative energy sources. Inherent uncertainty of power generation and demand being strongly influenced by the electricity market has posed severe challenges for DRPs (Demand Response Programs). Definitely, the success of such uncertain energy systems under new market structures is critically decided by the advancement of innovative technical and financial tools. Recent exponential growth of DG (distributed generations) demanded both the grid reliability and financial cost–benefits analysis for deregulated electricity market stakeholders. Based on the SGT (signaling game theory), the paper presents a novel user-aware demand-management approach where the price are colligated with grid condition uncertainties to manage the peak residential loads. The degree of information disturbances are considered as a key factor for evaluating electricity bidding mechanisms in the presence of independent multi-generation resources and price-elastic demand. A correlation between the cost–benefit price and variable reliability of grid is established under uncertain generation and demand conditions. Impacts of the strategies on load shape, benefit of customers and the reduction of energy consumption are inspected and compared with Time-of-Used based DRPs. Simulation results show that the proposed DRP can significantly reduce or even eliminate peak-hour energy consumption, leading to a substantial raise of revenues with 18% increase in the load reduction and a considerable improvement in system reliability is evidenced.

Suggested Citation

  • Zareen, N. & Mustafa, M.W. & Sultana, U. & Nadia, R. & Khattak, M.A., 2015. "Optimal real time cost-benefit based demand response with intermittent resources," Energy, Elsevier, vol. 90(P2), pages 1695-1706.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1695-1706
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zibelman, Audrey & Krapels, Edward N., 2008. "Deployment of Demand Response as a Real-Time Resource in Organized Markets," The Electricity Journal, Elsevier, vol. 21(5), pages 51-56, June.
    2. Ravindra, Kumudhini & Iyer, Parameshwar P., 2014. "Decentralized demand–supply matching using community microgrids and consumer demand response: A scenario analysis," Energy, Elsevier, vol. 76(C), pages 32-41.
    3. O'Mahoney, Amy & Denny, Eleanor, 2013. "Electricity prices and generator behaviour in gross pool electricity markets," Energy Policy, Elsevier, vol. 63(C), pages 628-637.
    4. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    5. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    6. Simoglou, Christos K. & Biskas, Pandelis N. & Vagropoulos, Stylianos I. & Bakirtzis, Anastasios G., 2014. "Electricity market models and RES integration: The Greek case," Energy Policy, Elsevier, vol. 67(C), pages 531-542.
    7. Walawalkar, Rahul & Blumsack, Seth & Apt, Jay & Fernands, Stephen, 2008. "An economic welfare analysis of demand response in the PJM electricity market," Energy Policy, Elsevier, vol. 36(10), pages 3692-3702, October.
    8. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    9. Blasques, L.C.M. & Pinho, J.T., 2012. "Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration," Energy Policy, Elsevier, vol. 45(C), pages 721-729.
    10. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    11. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    2. repec:eee:rensus:v:80:y:2017:i:c:p:367-379 is not listed on IDEAS
    3. repec:gam:jeners:v:11:y:2018:i:10:p:2748-:d:175487 is not listed on IDEAS
    4. Li, Lanlan & Gong, Chengzhu & Tian, Shizhong & Jiao, Jianling, 2016. "The peak-shaving efficiency analysis of natural gas time-of-use pricing for residential consumers: Evidence from multi-agent simulation," Energy, Elsevier, vol. 96(C), pages 48-58.
    5. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    6. Majzoobi, Alireza & Khodaei, Amin, 2017. "Application of microgrids in providing ancillary services to the utility grid," Energy, Elsevier, vol. 123(C), pages 555-563.
    7. repec:eee:energy:v:141:y:2017:i:c:p:1681-1694 is not listed on IDEAS
    8. Fera, M. & Macchiaroli, R. & Iannone, R. & Miranda, S. & Riemma, S., 2016. "Economic evaluation model for the energy Demand Response," Energy, Elsevier, vol. 112(C), pages 457-468.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1695-1706. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.