IDEAS home Printed from
   My bibliography  Save this article

Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050


  • Kwon, Pil Seok
  • Østergaard, Poul Alberg


Scenario-making is becoming an important tool in energy policy making and energy systems analyses. This article probes into the making of scenarios for Denmark by presenting a comparison of three future scenarios which narrate 100% renewable energy system for Denmark in 2050; IDA 2050, Climate Commission 2050, and CEESA (Coherent Energy and Environmental System Analysis). Generally, although with minor differences, the scenarios suggest the same technological solutions for the future such as expansion of biomass usage and wind power capacity, integration of transport sector into the other energy sectors. The methodologies used in two academic scenarios, IDA 2050 and CEESA, are compared. The main differences in the methodologies of IDA 2050 and CEESA are found in the estimation of future biomass potential, transport demand assessment, and a trial to examine future power grid in an electrical engineering perspective. The above-mentioned methodologies are compared in an evolutionary perspective to determine if the methodologies reflect the complex reality well. The results of the scenarios are also assessed within the framework of “radical technological change” in order to show which future scenario assumes more radical change within five dimensions of technology; technique, knowledge, organization, product, and profit.

Suggested Citation

  • Kwon, Pil Seok & Østergaard, Poul Alberg, 2012. "Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050," Energy, Elsevier, vol. 46(1), pages 275-282.
  • Handle: RePEc:eee:energy:v:46:y:2012:i:1:p:275-282
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Pillai, Jayakrishnan R. & Heussen, Kai & Østergaard, Poul Alberg, 2011. "Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios," Energy, Elsevier, vol. 36(5), pages 3233-3243.
    2. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    3. Robinson, John Bridger, 1982. "Energy backcasting A proposed method of policy analysis," Energy Policy, Elsevier, vol. 10(4), pages 337-344, December.
    4. Juul, Nina & Meibom, Peter, 2011. "Optimal configuration of an integrated power and transport system," Energy, Elsevier, vol. 36(5), pages 3523-3530.
    5. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    6. Benestad, Olav & Brinck, Lars & Emborg, Lennart & Juul-Kristensen, Bjarne & Kristiansen, Alexander & Meyer, Niels I. & Pulliaine, Kyosti & Selvig, Eivind & Vaittinen, Anssi, 1993. "Energy and environment : Nordic energy scenarios for 2010 and 2030," Energy Policy, Elsevier, vol. 21(12), pages 1225-1236, December.
    7. Hvelplund, Frede, 2006. "Renewable energy and the need for local energy markets," Energy, Elsevier, vol. 31(13), pages 2293-2302.
    8. Parajuli, Ranjan, 2012. "Looking into the Danish energy system: Lesson to be learned by other communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2191-2199.
    9. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    10. Alberg Østergaard, Poul, 2003. "Transmission-grid requirements with scattered and fluctuating renewable electricity-sources," Applied Energy, Elsevier, vol. 76(1-3), pages 247-255, September.
    11. Østergaard, Poul Alberg, 2006. "Ancillary services and the integration of substantial quantities of wind power," Applied Energy, Elsevier, vol. 83(5), pages 451-463, May.
    12. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    13. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    14. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    15. Hvelplund, Frede & Lund, Henrik, 1998. "Rebuilding without restructuring the energy system in east Germany," Energy Policy, Elsevier, vol. 26(7), pages 535-546, June.
    16. Mæng, H. & Lund, H. & Hvelplund, F., 1999. "Biogas plants in Denmark: technological and economic developments," Applied Energy, Elsevier, vol. 64(1-4), pages 195-206, September.
    17. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    18. Alberg Østergaard, Poul & Mathiesen, Brian Vad & Möller, Bernd & Lund, Henrik, 2010. "A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass," Energy, Elsevier, vol. 35(12), pages 4892-4901.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dawud Ansari & Franziska Holz & Hashem al-Kuhlani, 2019. "Energy Outlooks Compared: Global and Regional Insights," Discussion Papers of DIW Berlin 1837, DIW Berlin, German Institute for Economic Research.
    2. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "The influence of an estimated energy saving due to natural ventilation on the Mexican energy system," Energy, Elsevier, vol. 64(C), pages 1080-1091.
    3. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    4. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    5. Lund, Rasmus & Persson, Urban, 2016. "Mapping of potential heat sources for heat pumps for district heating in Denmark," Energy, Elsevier, vol. 110(C), pages 129-138.
    6. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    7. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    8. Sáfián, Fanni, 2014. "Modelling the Hungarian energy system – The first step towards sustainable energy planning," Energy, Elsevier, vol. 69(C), pages 58-66.
    9. Hvelplund, Frede & Østergaard, Poul Alberg & Meyer, Niels I., 2017. "Incentives and barriers for wind power expansion and system integration in Denmark," Energy Policy, Elsevier, vol. 107(C), pages 573-584.
    10. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    11. Rootzén, Johan & Johnsson, Filip, 2015. "CO2 emissions abatement in the Nordic carbon-intensive industry – An end-game in sight?," Energy, Elsevier, vol. 80(C), pages 715-730.
    12. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    13. Lund, Rasmus & Mathiesen, Brian Vad, 2015. "Large combined heat and power plants in sustainable energy systems," Applied Energy, Elsevier, vol. 142(C), pages 389-395.
    14. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    15. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    16. Sencar, Marko & Pozeb, Viljem & Krope, Tina, 2014. "Development of EU (European Union) energy market agenda and security of supply," Energy, Elsevier, vol. 77(C), pages 117-124.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:46:y:2012:i:1:p:275-282. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.