IDEAS home Printed from https://ideas.repec.org/a/aen/eeepjl/eeep9-1-ansari.html
   My bibliography  Save this article

Energy Outlooks Compared: Global and Regional Insights

Author

Listed:
  • Dawud Ansari, Franziska Holz, and Hashem Al-Kuhlani

Abstract

We compare prominent global energy scenarios of organizations and companies. We supplement the analysis with four own scenarios, which were derived from structured analytic techniques in combination with a numerical global energy and resource market model (Multimod). Our paper provides three central contributions: (i) a compact survey of selected outlooks with meta characteristics (conceptual nature, numerical framework, qualitative elaboration) and quantitative energy system indicators at the global and regional (Europe, Asia-Pacific region, North America) level; (ii) numerous observations from a verbal analysis intended to stimulate future research; and (iii) the discussion of our own outlook. We find that scenarios essentially carrying forward current policies and/or trends lead to future worlds that do not meet the 2°C target of the Paris Agreement. Interestingly, there are both normative and exploratory scenarios reaching the Paris Agreement, and there is no consensus between outlooks on how to attain low-emission futures towards 2050. Some scenarios rely on a very strong role of renewables, others on a substantial role of negative emission technologies with fossil fuel use, yet others on assuming decreasing energy demand. There is a strong variation between outlooks with respect to transparency on scenario generation, modelling approach, and data. We argue that, in addition to transparency, the actual inclusion of a qualitative analysis of drivers and storylines helps ensure the political, social and technological feasibility of scenarios.

Suggested Citation

  • Dawud Ansari, Franziska Holz, and Hashem Al-Kuhlani, 2020. "Energy Outlooks Compared: Global and Regional Insights," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1), pages 21-42.
  • Handle: RePEc:aen:eeepjl:eeep9-1-ansari
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/eeeparticle.aspx?id=302
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    2. Kwon, Pil Seok & Østergaard, Poul Alberg, 2012. "Comparison of future energy scenarios for Denmark: IDA 2050, CEESA (Coherent Energy and Environmental System Analysis), and Climate Commission 2050," Energy, Elsevier, vol. 46(1), pages 275-282.
    3. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    4. Ansari, Dawud, 2017. "OPEC, Saudi Arabia, and the shale revolution: Insights from equilibrium modelling and oil politics," Energy Policy, Elsevier, vol. 111(C), pages 166-178.
    5. Sorrell, Steve & Miller, Richard & Bentley, Roger & Speirs, Jamie, 2010. "Oil futures: A comparison of global supply forecasts," Energy Policy, Elsevier, vol. 38(9), pages 4990-5003, September.
    6. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    7. Dawud Ansari & Franziska Holz & Hashem al-Kuhlani, 2019. "Energy, Climate, and Policy towards 2055: An Interdisciplinary Energy Outlook (DIW-REM Outlook)," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk139, January.
    8. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.
    9. Gokul Iyer & James Edmonds, 2018. "Interpreting energy scenarios," Nature Energy, Nature, vol. 3(5), pages 357-358, May.
    10. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    11. Derbyshire, James, 2017. "Potential surprise theory as a theoretical foundation for scenario planning," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 77-87.
    12. Dawud Ansari, 2019. "Rigging economics," Nature Energy, Nature, vol. 4(4), pages 263-264, April.
    13. Christopher Weber & David L. McCollum & Jae Edmonds & Pedro Faria & Alban Pyanet & Joeri Rogelj & Massimo Tavoni & Jakob Thoma & Elmar Kriegler, 2018. "Mitigation scenarios must cater to new users," Nature Climate Change, Nature, vol. 8(10), pages 845-848, October.
    14. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    15. Cochran, Jaquelin & Mai, Trieu & Bazilian, Morgan, 2014. "Meta-analysis of high penetration renewable energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 246-253.
    16. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    17. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The death spiral of coal in the U.S.: will changes in U.S. Policy turn the tide?," Climate Policy, Taylor & Francis Journals, vol. 19(10), pages 1310-1324, November.
    18. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    19. Sandro Mendonca & Miguel Pina e Cunha & Jari Kaivo-oja & Frank Ruff, 2003. "Wild cards, weak signals and organizational improvisation," Nova SBE Working Paper Series wp432, Universidade Nova de Lisboa, Nova School of Business and Economics.
    20. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    21. Roman Mendelevitch & Christian Hauenstein & Franziska Holz, 2019. "The Death Spiral of Coal in the USA: Will New U.S. Energy Policy Change the Tide?," Discussion Papers of DIW Berlin 1790, DIW Berlin, German Institute for Economic Research.
    22. Esmail Ansari & Robert. K. Kaufmann, 2019. "The effect of oil and gas price and price volatility on rig activity in tight formations and OPEC strategy," Nature Energy, Nature, vol. 4(4), pages 321-328, April.
    23. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
    24. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    25. Ernst, Anna & Biß, Klaus H. & Shamon, Hawal & Schumann, Diana & Heinrichs, Heidi U., 2018. "Benefits and challenges of participatory methods in qualitative energy scenario development," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 245-257.
    26. Franziska Holz & Philipp M. Richter & Ruud Egging, 2015. "A Global Perspective on the Future of Natural Gas: Resources, Trade, and Climate Constraints," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(1), pages 85-106.
    27. Ansari, Dawud & Holz, Franziska, 2019. "Anticipating global energy, climate and policy in 2055: Constructing qualitative and quantitative narratives," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 58, pages 1-23.
    28. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    29. Sergey Paltsev, 2017. "Energy scenarios: the value and limits of scenario analysis," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 130, pages 1-1.
    2. Dawud Ansari & Mariza Montes de Oca Leon & Helen Schlüter, 2021. "What Drives Saudi Airstrikes in Yemen? An Empirical Analysis of the Dynamics of Coalition Airstrikes, Houthi Attacks, and the Oil Market," Discussion Papers of DIW Berlin 1959, DIW Berlin, German Institute for Economic Research.
    3. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.
    4. Dawud Ansari & Regine Schönenberg & Melissa Abud & Laura Becerra & Anne Cristina de la Vega-Leinert & Nigel Dudley & Michael Dunlop & Carolina Figueroa & Oscar Guevara & Philipp Hauser & Hannes Hobbie, 2021. "Communications on Climate Change and Biodiversity Loss with Local Populations: Exploring Best-practices and Postcolonial Moments in Eight Case Studies from across the Globe," Discussion Papers of DIW Berlin 1945, DIW Berlin, German Institute for Economic Research.
    5. Durand-Lasserve, Olivier & Pierru, Axel, 2021. "Modeling world oil market questions: An economic perspective," Energy Policy, Elsevier, vol. 159(C).
    6. Gauthier de Maere d’Aertrycke & Yves Smeers & Hugues de Peufeilhoux & Pierre-Laurent Lucille, 2020. "The Role of Electrification in the Decarbonization of Central-Western Europe," Energies, MDPI, vol. 13(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 130, pages 1-1.
    2. van Ruijven, Bas J. & Daenzer, Katie & Fisher-Vanden, Karen & Kober, Tom & Paltsev, Sergey & Beach, Robert H. & Calderon, Silvia Liliana & Calvin, Kate & Labriet, Maryse & Kitous, Alban & Lucena, Andr, 2016. "Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions," Energy Economics, Elsevier, vol. 56(C), pages 499-512.
    3. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    4. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    5. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    6. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    7. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    8. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    11. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Dudu, Hasan & Ferrari, Emanuele & Mainar, Alfredo & Sartori, Martina, 2018. "Economy-wide impact of changing water availability in Senegal: an application of the JRC.DEMETRA CGE model," Conference papers 332934, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Koch, Johannes & Leimbach, Marian, 2023. "SSP economic growth projections: Major changes of key drivers in integrated assessment modelling," Ecological Economics, Elsevier, vol. 206(C).
    14. Carina Harpprecht & Lauran van Oers & Stephen A. Northey & Yongxiang Yang & Bernhard Steubing, 2021. "Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1543-1559, December.
    15. Nigel W. Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    16. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    17. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    18. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    19. Standardi, Gabriele, 2017. "Endogenous technical change linked to international mobility of primary factors in climate change scenarios: global welfare implications using the GTAP model," Conference papers 332920, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:eeepjl:eeep9-1-ansari. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.