IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics0306261922005396.html
   My bibliography  Save this article

Linking SDG 7 to assess the renewable energy footprint of nations by 2030

Author

Listed:
  • He, Jianjian
  • Yang, Yi
  • Liao, Zhongju
  • Xu, Anqi
  • Fang, Kai

Abstract

The United Nations’ Sustainable Development Goals (SDGs) provide a guideline for humanity to respond to an array of pressing challenges. Due to our increasing need for energy supply and more stringent standards for environmental quality, having access to affordable and clean energy has been the foremost pursuit of SDG 7. Development in renewables represents a way to achieve this goal. Here, we establish a Footprint-Driver-Scenario (FDS) framework for accounting for the renewable energy footprint of 189 global economies based on a global multi-regional input − output (MRIO) model and identifying the major drivers behind based on the logarithmic mean Divisia index (LMDI) in 1990–2015, and projecting the national renewable energy footprint by 2030 based on the Shared Socioeconomic Pathways (SSPs) scenarios. We find that total and per capita renewable energy footprint varies substantially between nations. The improvement in energy efficiency (SDG 7.3) and decline in footprint-to-energy ratio contribute to the reduction of renewable energy footprint, as opposed to the per capita GDP, population, share of renewable energy in energy mix (SDG 7.2) and proportion of population with access to electricity (SDG 7.1), all of which lead to footprint increase considerably. Despite the great progress in SDGs 7.1–7.3 by 2030, the expected goals still cannot be fully reached in any of the SSP scenarios. Our research findings can assist policy makers in better understanding the critical role of renewable energy in achieving SDG 7. The FDS framework can be potentially applied to a wide range of SDGs at the global, national and sub-national scales.

Suggested Citation

  • He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005396
    DOI: 10.1016/j.apenergy.2022.119167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    2. Xuechun Yang & Sai Liang & Jianchuan Qi & Cuiyang Feng & Shen Qu & Ming Xu, 2021. "Identifying sectoral impacts on global scarce water uses from multiple perspectives," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1503-1517, December.
    3. Nico Bauer & Christoph Bertram & Anselm Schultes & David Klein & Gunnar Luderer & Elmar Kriegler & Alexander Popp & Ottmar Edenhofer, 2020. "Quantification of an efficiency–sovereignty trade-off in climate policy," Nature, Nature, vol. 588(7837), pages 261-266, December.
    4. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    5. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    6. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    7. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    8. Kaygusuz, Kamil, 2012. "Energy for sustainable development: A case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1116-1126.
    9. Zhenci Xu & Sophia N. Chau & Xiuzhi Chen & Jian Zhang & Yingjie Li & Thomas Dietz & Jinyan Wang & Julie A. Winkler & Fan Fan & Baorong Huang & Shuxin Li & Shaohua Wu & Anna Herzberger & Ying Tang & De, 2020. "Assessing progress towards sustainable development over space and time," Nature, Nature, vol. 577(7788), pages 74-78, January.
    10. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    11. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    12. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Author Correction: Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(4), pages 362-362, April.
    13. Paula A. Harrison & Robert W. Dunford & Ian P. Holman & Mark D. A. Rounsevell, 2016. "Climate change impact modelling needs to include cross-sectoral interactions," Nature Climate Change, Nature, vol. 6(9), pages 885-890, September.
    14. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    15. Lu, Qinli & Fang, Kai & Heijungs, Reinout & Feng, Kuishuang & Li, Jiashuo & Wen, Qi & Li, Yanmei & Huang, Xianjin, 2020. "Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative," Applied Energy, Elsevier, vol. 280(C).
    16. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    17. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    18. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    19. Peter J. Loftus & Armond M. Cohen & Jane C. S. Long & Jesse D. Jenkins, 2015. "A critical review of global decarbonization scenarios: what do they tell us about feasibility?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(1), pages 93-112, January.
    20. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    21. Frances C. Moore & Katherine Lacasse & Katharine J. Mach & Yoon Ah Shin & Louis J. Gross & Brian Beckage, 2022. "Determinants of emissions pathways in the coupled climate–social system," Nature, Nature, vol. 603(7899), pages 103-111, March.
    22. Heleen L. Soest & Michel G. J. Elzen & Detlef P. Vuuren, 2021. "Net-zero emission targets for major emitting countries consistent with the Paris Agreement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    23. Matsumoto, Ken’ichi & Shiraki, Hiroto, 2018. "Energy security performance in Japan under different socioeconomic and energy conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 391-401.
    24. Christoph Bertram & Gunnar Luderer & Robert C. Pietzcker & Eva Schmid & Elmar Kriegler & Ottmar Edenhofer, 2015. "Complementing carbon prices with technology policies to keep climate targets within reach," Nature Climate Change, Nature, vol. 5(3), pages 235-239, March.
    25. Drew Shindell & Christopher J. Smith, 2019. "Climate and air-quality benefits of a realistic phase-out of fossil fuels," Nature, Nature, vol. 573(7774), pages 408-411, September.
    26. Scott Spillias & Peter Kareiva & Mary Ruckelshaus & Eve McDonald-Madden, 2020. "Renewable energy targets may undermine their sustainability," Nature Climate Change, Nature, vol. 10(11), pages 974-976, November.
    27. Ferng, Jiun-Jiun, 2002. "Toward a scenario analysis framework for energy footprints," Ecological Economics, Elsevier, vol. 40(1), pages 53-69, January.
    28. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    29. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    30. Anderson, Edward, 2022. "The correlates of declining income inequality among emerging and developing economies during the 2000s," World Development, Elsevier, vol. 152(C).
    31. Mouratiadou, Ioanna & Biewald, Anne & Pehl, Michaja & Bonsch, Markus & Baumstark, Lavinia & Klein, David & Popp, Alexander & Luderer, Gunnar & Kriegler, Elmar, 2016. "The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways," Environmental Science & Policy, Elsevier, vol. 64(C), pages 48-58.
    32. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    33. Fang, Kai & Zhou, Yunheng & Wang, Shuang & Ye, Ruike & Guo, Sujian, 2018. "Assessing national renewable energy competitiveness of the G20: A revised Porter's Diamond Model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 719-731.
    34. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    35. James Ward & Steve Mohr & Robert Costanza & Paul Sutton & Luca Coscieme, 2020. "Renewable Energy Equivalent Footprint ( REEF ): A Method for Envisioning a Sustainable Energy Future," Energies, MDPI, vol. 13(23), pages 1-19, November.
    36. Mathis Wackernagel & Laurel Hanscom & Priyangi Jayasinghe & David Lin & Adeline Murthy & Evan Neill & Peter Raven, 2021. "The importance of resource security for poverty eradication," Nature Sustainability, Nature, vol. 4(8), pages 731-738, August.
    37. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    38. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.
    39. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    40. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    41. Adam Yeeles, 2019. "Sustainable development and climate goals," Nature Climate Change, Nature, vol. 9(7), pages 497-498, July.
    42. Arnold Tukker & Erik Dietzenbacher, 2013. "Global Multiregional Input-Output Frameworks: An Introduction And Outlook," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 1-19, March.
    43. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    44. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    45. Francesco Fuso Nerini & Julia Tomei & Long Seng To & Iwona Bisaga & Priti Parikh & Mairi Black & Aiduan Borrion & Catalina Spataru & Vanesa Castán Broto & Gabrial Anandarajah & Ben Milligan & Yacob Mu, 2018. "Mapping synergies and trade-offs between energy and the Sustainable Development Goals," Nature Energy, Nature, vol. 3(1), pages 10-15, January.
    46. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    47. Ivanic, Maros & Martin, Will, 2018. "Sectoral Productivity Growth and Poverty Reduction: National and Global Impacts," World Development, Elsevier, vol. 109(C), pages 429-439.
    48. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    49. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2021. "Sustainable energy development: History of the concept and emerging themes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    50. Clare Wenham & Julia Smith & Sara E. Davies & Huiyun Feng & Karen A. Grépin & Sophie Harman & Asha Herten-Crabb & Rosemary Morgan, 2020. "Women are most affected by pandemics — lessons from past outbreaks," Nature, Nature, vol. 583(7815), pages 194-198, July.
    51. Cameron Allen & Graciela Metternicht & Thomas Wiedmann & Matteo Pedercini, 2019. "Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging," Nature Sustainability, Nature, vol. 2(11), pages 1041-1050, November.
    52. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    53. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    54. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "Author Correction: The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 544-544, June.
    55. Sun, Yida & Hao, Qi & Cui, Can & Shan, Yuli & Zhao, Weichen & Wang, Daoping & Zhang, Zhenke & Guan, Dabo, 2022. "Emission accounting and drivers in East African countries," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Qiumeng & Zhang, Zhihe & Wang, Heming & Zhang, Xu & Wang, Yao & Wang, Peng & Ma, Fengmei & Yue, Qiang & Du, Tao & Chen, Wei-Qiang & Liang, Sai, 2023. "Incorporating scarcity into footprints reveals diverse supply chain hotspots for global fossil fuel management," Applied Energy, Elsevier, vol. 349(C).
    2. Bartolomé Marco-Lajara & Javier Martínez-Falcó & Eduardo Sánchez-García & Luis A. Millan-Tudela, 2023. "Analyzing the Role of Renewable Energy in Meeting the Sustainable Development Goals: A Bibliometric Analysis," Energies, MDPI, vol. 16(7), pages 1-22, March.
    3. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    4. Xiangwen Xue & Qi Zhang & Xinyu Cai & Vadim V. Ponkratov, 2023. "Multi-Criteria Decision Analysis for Evaluating the Effectiveness of Alternative Energy Sources in China," Sustainability, MDPI, vol. 15(10), pages 1-14, May.
    5. Mohsin Dhali & Shafiqul Hassan & Umashankar Subramaniam, 2023. "Comparative Analysis of Oil and Gas Legal Frameworks in Bangladesh and Nigeria: A Pathway towards Achieving Sustainable Energy through Policy," Sustainability, MDPI, vol. 15(21), pages 1-30, October.
    6. Meng, Conghui & Du, Xiaoyun & Zhu, Mengcheng & Ren, Yitian & Fang, Kai, 2023. "The static and dynamic carbon emission efficiency of transport industry in China," Energy, Elsevier, vol. 274(C).
    7. Yang Yu & Jun Nie & Atif Jahanger, 2024. "An Evaluation of the Energy-Related Carbon Dioxide Emissions From China’s Light Sector to Achieve Sustainable Development Goals," Evaluation Review, , vol. 48(1), pages 7-31, February.
    8. Zhao, Junjie & Luo, Xiaobing & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel CCHP system based on a closed PEMEC-PEMFC loop with water self-supply," Applied Energy, Elsevier, vol. 338(C).
    9. Kedar Mehta & Mathias Ehrenwirth & Christoph Trinkl & Wilfried Zörner, 2022. "Mapping Potential for Improving Rural Energy Services in Kyrgyzstan: Factors for Achieving Sustainable Development Goals in the Community Context," World, MDPI, vol. 3(3), pages 1-21, August.
    10. Li, Jiapeng & Zuo, Xuguang & Sun, Chuanwang, 2023. "The effect of urban renewal on residential energy consumption expenditure--the example of shantytown renovation," Energy Policy, Elsevier, vol. 183(C).
    11. Nusrat Farzana & Md Qamruzzaman & Yeasmin Islam & Piana Monsur Mindia, 2023. "Nexus between Personal Remittances, Financial Deepening, Urbanization, and Renewable Energy Consumption in Selected Southeast Asian Countries: Evidence from Linear and Nonlinear Assessment," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 270-287, November.
    12. Yongchao Qu & Jian Zhang & Chongyuan Xu & Yichao Gao & Shanwen Zheng & Meiling Xia, 2022. "Analysis of Spatial Carbon Metabolism by ENA: A Case Study of Tongzhou District, Beijing," Land, MDPI, vol. 11(9), pages 1-17, September.
    13. Costinela FORTEA & Monica-Laura ZLATI & Valentin-Marian ANTOHI & Romeo-Victor IONESCU & Dragos-Sebastian CRISTEA, 2022. "Analysis of the Energy Status in Romania from the Sustainable Development Perspective in the Current Geopolitical Context," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 52-59.
    14. Golrokh Sani, Ahmad & Najafi, Hamidreza & Azimi, Seyedeh Shakiba, 2022. "Dynamic thermal modeling of the refrigerated liquified CO2 tanker in carbon capture, utilization, and storage chain: A truck transport case study," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Rui & Tian, Lixin, 2021. "CO2 emissions inequality through the lens of developing countries," Applied Energy, Elsevier, vol. 281(C).
    2. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    3. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    4. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    5. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    6. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.
    7. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    8. Marian Leimbach & Nico Bauer, 2022. "Capital markets and the costs of climate policies," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 397-420, July.
    9. Priess, Joerg A. & Hauck, Jennifer & Haines-Young, Roy & Alkemade, Rob & Mandryk, Maryia & Veerkamp, Clara & Gyorgyi, Bela & Dunford, Rob & Berry, Pam & Harrison, Paula & Dick, Jan & Keune, Hans & Kok, 2018. "New EU-scale environmental scenarios until 2050 – Scenario process and initial scenario applications," Ecosystem Services, Elsevier, vol. 29(PC), pages 542-551.
    10. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Mundaca, Luis & Markandya, Anil, 2016. "Assessing regional progress towards a ‘Green Energy Economy’," Applied Energy, Elsevier, vol. 179(C), pages 1372-1394.
    12. Domicián Máté & Mohammad Fazle Rabbi & Adam Novotny & Sándor Kovács, 2020. "Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use," Energies, MDPI, vol. 13(20), pages 1-16, October.
    13. Kelsey Shaw & Christopher Kennedy & Caetano C. Dorea, 2021. "Non-Sewered Sanitation Systems’ Global Greenhouse Gas Emissions: Balancing Sustainable Development Goal Tradeoffs to End Open Defecation," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    14. Holman, I.P. & Brown, C & Janes, V & Sandars, D, 2017. "Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis," Agricultural Systems, Elsevier, vol. 151(C), pages 126-135.
    15. Schulhof, Vera & van Vuuren, Detlef & Kirchherr, Julian, 2022. "The Belt and Road Initiative (BRI): What Will it Look Like in the Future?," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    17. Cotterman, Turner, 2019. "Why Rapid and Deep Decarbonization isn’t Simple: Linking Bottom-up Socio-technical Decision-making Insights with Top-down Macroeconomic Analyses," Conference papers 333088, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    19. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    20. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.