IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v178y2022ics0040162522001007.html
   My bibliography  Save this article

Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models

Author

Listed:
  • Odenweller, Adrian

Abstract

Transforming global energy systems is critical for climate change mitigation and requires overcoming not only techno-economic, but also socio-technical hurdles. The main tools to analyse challenges in these two domains are integrated assessment models (IAMs) and transition theories or models, respectively. Despite a surging interest in integrative research that leverages complementarities in order to include social constraints into IAMs, both approaches are often confined to their own disciplinary background and practical integration studies of existing models are scarce. Here I demonstrate the feasibility of model integration by a bi-directional soft-link that merges the strengths of a neoclassical intertemporally optimising IAM with one global region, and a technologically and regionally highly resolved, evolutionary simulation model of S-shaped technology diffusion in the power sector. The new model iteratively converges to a stable equilibrium via two time-dependent coupling variables: carbon prices and renewable energy shares. The results for a 2 °C scenario show that due to gradual technology diffusion, energy transition challenges are exacerbated and incur higher economic losses. I discuss the potential of coupling existing models as an option to combine insights from different disciplinary perspectives to energy transitions.

Suggested Citation

  • Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s0040162522001007
    DOI: 10.1016/j.techfore.2022.121568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522001007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    2. Frank W. Geels & Frans Berkhout & Detlef P. van Vuuren, 2016. "Bridging analytical approaches for low-carbon transitions," Nature Climate Change, Nature, vol. 6(6), pages 576-583, June.
    3. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    4. Otto, Ilona M. & Wiedermann, Marc & Cremades, Roger & Donges, Jonathan F. & Auer, Cornelia & Lucht, Wolfgang, 2020. "Human agency in the Anthropocene," Ecological Economics, Elsevier, vol. 167(C).
    5. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    6. Marina Andrijevic & Jesus Crespo Cuaresma & Raya Muttarak & Carl-Friedrich Schleussner, 2020. "Governance in socioeconomic pathways and its role for future adaptive capacity," Nature Sustainability, Nature, vol. 3(1), pages 35-41, January.
    7. Jessica Strefler & Elmar Kriegler & Nico Bauer & Gunnar Luderer & Robert C. Pietzcker & Anastasis Giannousakis & Ottmar Edenhofer, 2021. "Alternative carbon price trajectories can avoid excessive carbon removal," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    9. Alexandre C. Köberle & Toon Vandyck & Celine Guivarch & Nick Macaluso & Valentina Bosetti & Ajay Gambhir & Massimo Tavoni & Joeri Rogelj, 2021. "The cost of mitigation revisited," Nature Climate Change, Nature, vol. 11(12), pages 1035-1045, December.
    10. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    11. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    12. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    13. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    14. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    15. Geoffrey Blanford & Elmar Kriegler & Massimo Tavoni, 2014. "Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27," Climatic Change, Springer, vol. 123(3), pages 383-396, April.
    16. Wei Peng & Gokul Iyer & Valentina Bosetti & Vaibhav Chaturvedi & James Edmonds & Allen A. Fawcett & Stéphane Hallegatte & David G. Victor & Detlef van Vuuren & John Weyant, 2021. "Climate policy models need to get real about people — here’s how," Nature, Nature, vol. 594(7862), pages 174-176, June.
    17. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    18. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    19. De Cian, Enrica & Dasgupta, Shouro & Hof, Andries F. & van Sluisveld, Mariësse A.E. & Köhler, Jonathan & Pfluger, Benjamin & van Vuuren, Detlef P., 2020. "Actors, decision-making, and institutions in quantitative system modelling," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    20. van Sluisveld, Mariësse A.E. & Hof, Andries F. & Carrara, Samuel & Geels, Frank W. & Nilsson, Måns & Rogge, Karoline & Turnheim, Bruno & van Vuuren, Detlef P., 2020. "Aligning integrated assessment modelling with socio-technical transition insights: An application to low-carbon energy scenario analysis in Europe," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    21. Jean-François Mercure, 2015. "An age structured demographic theory of technological change," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 787-820, September.
    22. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    23. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    24. Geels, F.W. & McMeekin, A. & Pfluger, B., 2020. "Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: Bridging computer models and the multi-level perspective in UK electricity gen," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    25. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    26. Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.
    27. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    28. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    29. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    30. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    31. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
    32. Nathalie Lazaric & Kevin Maréchal, 2010. "Overcoming inertia: insights from evolutionary economics into improved energy and climate policy," Post-Print hal-00452205, HAL.
    33. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    34. Christoph Bertram & Gunnar Luderer & Robert C. Pietzcker & Eva Schmid & Elmar Kriegler & Ottmar Edenhofer, 2015. "Complementing carbon prices with technology policies to keep climate targets within reach," Nature Climate Change, Nature, vol. 5(3), pages 235-239, March.
    35. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
    36. J.-F. Mercure & H. Pollitt & J. E. Viñuales & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & I. Sognnaes & A. Lam & F. Knobloch, 2018. "Macroeconomic impact of stranded fossil fuel assets," Nature Climate Change, Nature, vol. 8(7), pages 588-593, July.
    37. Pfeiffer, Alexander & Hepburn, Cameron & Vogt-Schilb, Adrien & Caldecott, Ben, 2018. "Committed Emissions from Existing and Planned Power Plants and Asset Stranding Required to Meet the Paris Agreement," IDB Publications (Working Papers) 8886, Inter-American Development Bank.
    38. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    39. David Victor, 2015. "Climate change: Embed the social sciences in climate policy," Nature, Nature, vol. 520(7545), pages 27-29, April.
    40. Jean-Francois Mercure & Florian Knobloch & Hector Pollitt & Leonidas Paroussos & S. Serban Scrieciu & Richard Lewney, 2019. "Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use," Climate Policy, Taylor & Francis Journals, vol. 19(8), pages 1019-1037, September.
    41. Hof, Andries F. & van Vuuren, Detlef P. & Berkhout, Frans & Geels, Frank W., 2020. "Understanding transition pathways by bridging modelling, transition and practice-based studies: Editorial introduction to the special issue," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    42. Robertson, Elizabeth & O'Grady, Áine & Barton, John & Galloway, Stuart & Emmanuel-Yusuf, Damiete & Leach, Matthew & Hammond, Geoff & Thomson, Murray & Foxon, Tim, 2017. "Reconciling qualitative storylines and quantitative descriptions: An iterative approach," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 293-306.
    43. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    44. Elnaz Roshan & Mohammad M. Khabbazan & Hermann Held, 2019. "Cost-Risk Trade-Off of Mitigation and Solar Geoengineering: Considering Regional Disparities Under Probabilistic Climate Sensitivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 263-279, January.
    45. Neil Grant & Adam Hawkes & Tamaryn Napp & Ajay Gambhir, 2020. "The appropriate use of reference scenarios in mitigation analysis," Nature Climate Change, Nature, vol. 10(7), pages 605-610, July.
    46. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    47. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    48. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    49. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    50. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    51. Kevin Marechal & Nathalie Lazaric, 2010. "Overcoming inertia: insights from evolutionary economics into improved energy and climate policies," Climate Policy, Taylor & Francis Journals, vol. 10(1), pages 103-119, January.
    52. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    53. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    54. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    55. Madsen, Dorte Nørgaard & Hansen, Jan Petter, 2019. "Outlook of solar energy in Europe based on economic growth characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    56. Ottmar Edenhofer & Carlo Carraro & Jean-Charles Hourcade, 2012. "On the economics of decarbonization in an imperfect world," Climatic Change, Springer, vol. 114(1), pages 1-8, September.
    57. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    2. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    3. van Sluisveld, Mariësse A.E. & Hof, Andries F. & Carrara, Samuel & Geels, Frank W. & Nilsson, Måns & Rogge, Karoline & Turnheim, Bruno & van Vuuren, Detlef P., 2020. "Aligning integrated assessment modelling with socio-technical transition insights: An application to low-carbon energy scenario analysis in Europe," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. Hof, Andries F. & Carrara, Samuel & De Cian, Enrica & Pfluger, Benjamin & van Sluisveld, Mariësse A.E. & de Boer, Harmen Sytze & van Vuuren, Detlef P., 2020. "From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    6. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    7. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    8. De Cian, Enrica & Dasgupta, Shouro & Hof, Andries F. & van Sluisveld, Mariësse A.E. & Köhler, Jonathan & Pfluger, Benjamin & van Vuuren, Detlef P., 2020. "Actors, decision-making, and institutions in quantitative system modelling," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    11. J.-F. Mercure & A. Lam & S. Billington & H. Pollitt, 2018. "Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ∘C," Climatic Change, Springer, vol. 151(2), pages 109-129, November.
    12. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    13. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    14. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    15. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    16. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    17. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    18. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    19. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s0040162522001007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.